- iR 4 -4 A oaeE A\
II‘I r"‘ % in I: HavTHh a . ‘! '
I\ 4 S &n
9780170364744 ey \l‘ | ‘g‘,‘@pter 6 Programrﬁhﬁg 217
d % By

INTRODUCTION

Unit 2 of VCE Computing focuses on data and how computational, design and systems

thinking skills are applied to support the creation of a range of solutions.

Throughout Unit 2, students will be required to apply the analysis, design, development
and evaluation stages of the problem-solving methodology outlined in Unit 1. In Area
of Study 1: Programming, students develop a range of knowledge and skills while using
programming and scripting languages, and associated software, to create solutions. In
Area of Study 2: Data analysis and visualisation, students expand on their knowledge of
data and the various tools that are used to extract it, reduce its complexity and manipulate
it to create clear, attractive and useful visualisations. In Area of Study 3: Data management,
students use database management software to create a solution that applies all stages of
the problem-solving methodology.

AREA OF STUDY 1: PROGRAMMING

Outcome 1
You are required to design working modules in response to solution requirements, and use
a programming or scripting language to develop the modules.

To achieve this Outcome, the student will draw on key knowledge and key skills
outlined in Area of Study 1.

AREA OF STUDY 2: DATA ANALYSIS AND VISUALISATION

Outcome 2
You are required to apply the problem-solving methodology and use appropriate software
tools to extract relevant data and create a data visualisation that meets a specified user’s
needs.

To achieve this Outcome, the student will draw on key knowledge and key skills
outlined in Area of Study 2.

AREA OF STUDY 3: DATA MANAGEMENT

Outcome 3

You are required to apply the problem-solving methodology to create a solution using

database management software, and explain the personal benefits and risks of interacting
with a database.

To achieve this Outcome, the student will draw on key knowledge and key skills
outlined in Area of Study 3.

218 Computing VCE Units 1 & 2 9780170364744

PROGRAMMING
Key knowledge

After completing this chapter, you will be able to demonstrate knowledge of:

Data and information

« characteristics of data types and methods of representing and storing text, sound
and images

Digital systems

. functions and capabilities of key hardware and software components of digital
systems required for processing, storing and communicating data and information

Approaches to problem solving

. functional requirements of solutions

« methods for creating algorithms such as identifying the required output, the input
needed to produce the output, and the processing steps necessary to achieve the
transformation from a design to a solution

. suitable methods of representing solution designs such as data dictionaries, data
structure diagrams, object descriptions and pseudocode

« characteristics of effective user interfaces, for example useability, accessibility,
structure, visibility, legibility, consistency, tolerance, affordance

« techniques for manipulating data and information

+ naming conventions for files and objects

. testing and debugging techniques, including construction of test data

Key skills

interpret solution requirements

. select and use appropriate methods for expressing solution designs, including user
interfaces

. apply techniques for manipulating data and information using a programming or
scripting language

+ devise meaningful naming conventions for files and objects

- apply testing techniques using appropriate test data.

For the student

This chapter relates to VCE Computing Unit 2, Area of Study 1: Programming. It
introduces basic programming concepts such as software development tools, storage and
control structures, the software development process, design tools, types of programming
languages, and universal programming ideas such as pseudocode, modules, loops,
debugging and testing. You will also be learning a specific programming language that
you will use to develop a series of small programming tasks for Unit 2, Outcome 1.

For the teacher

This chapter introduces students to the universal theoretical concepts behind programming
that are required for Unit 2, Outcome 1. It does not assume knowledge of, or use source
code from any actual language. Instead, pseudocode is used. Little previous programming
experience can be expected from many students, so it is important to introduce the chosen
language to them early, and give them time to train up. Unit 2, Outcome 1 should consist of a
few (perhaps five) small, independent tasks that include basic programming concepts, such
as storage, logic, loops and calculations.

ny = F

9780170364744 Chapter 6 Programming 219

Information systems in programming

This chapter deals with Unit 2, Outcome 1 of Computing. Throughout this Area of Study, you Information systems are
will focus on using a programming or scripting language that is capable of supporting object- explained in Chapter 3.
oriented programming (OOP) to create working software modules. Programming and scripting
languages provide more flexibility than applications do, because you can insert specific
instructions to create a purpose-designed solution.

The specific language that you study is flexible. You will also develop and hone your skills
in interpreting solution requirements that come from your teacher, and in designing working
modules. During this Area of Study, you will apply methods and techniques for completing
a series of small discrete tasks or working modules that use features of a programming or
scripting language, including predefined classes.

You will also apply knowledge and skills associated with the design and development stages
of the problem-solving methodology (PSM).

Information systems comprise people, data, processes and digital systems. In the context of
programming, the key parts are:

1 people, who interact with systems according to their needs, such as programmers, data
entry operators, system managers, technicians and end users

2 data, which is composed of raw, unprocessed facts and figures, such as someone’s date of
birth, that is used as input to be processed into meaningful information as output, such as
someones age

3 processes, which are the manual and automated ways of achieving a result, such as a
manual data backup or an automated hard disk error scan

4 digital systems, which are made up of the hardware and software needed to support
programming and software use.

Digital systems are made up of the following components. See Chapter 3 for more

+ Networks exchange data between computers. information on networks
« Protocols are rules used to coordinate and standardise communication between and protocols.
devices.

« Application architecture patterns are sets of principles used to provide a framework for
structuring solutions to recurring problems; for example, thin client is the philosophy
that, rather than use powerful computers it is better to use dumb’ workstations
connected to a powerful central computer that does all the processing work for them.

+ Software comes in three types: systems, applications and utilities.

« Hardware is physical equipment for input, output, storage, processing and
communication.

The following section will discuss in more detail the hardware and software components of

digital systems.

Hardware

The physical components of digital systems are known as hardware. They include familiar items
such as the monitor, mouse, hard disk drive (HDD), motherboard, graphics card, sound card
and so on.
Hardware requires software instructions to control it; software requires hardware to carry
out its instructions. They work together to form a useable digital system.
Hardware falls under a number of categories, including:
. input devices, which are instruments and peripherals, such as keyboards, that enable
users to send data and commands to software and the operating system

Shutterstock.com/
Jiggo_thekop

220 Computing VCE Units 1 & 2 9780170364744

THINK ABOUT y.
COMPUTING 6.1

Research the CPUs of a
mobile phone, a laptop and
a desktop gaming machine.
How do they differ, and
how is their performance
measured?

As CPUs get smaller, the
laws of physics start to be
bent. When electrons travel
in time, or disappear and
reappear elsewhere in the
universe, CPUs will become
unreliable. Quantum
computing hopes to fix

this problem.

- output devices, which are instruments and peripherals such as printers and monitors that
display information from a computer in human-readable form
« processing hardware
+ storage hardware
« communication hardware.
The following sections cover processing, storage and communication hardware in greater
depth.

Processing hardware

The key element of programming hardware is the processing hardware - the digital processor
that converts data into information and controls all of the other hardware in the system.

CPU

The central processing unit (CPU) is often thought of as the ‘brain’ of a digital system and it
handles most of a system’s data manipulation. The CPU is helped by other processors, such
as those in the video card, hard disk drives and audio controller chips. Major CPU designers
include Intel, AMD, ARM and IBM.

Reduced instruction set computing (RISC) CPUs, such as ARM, have smaller instruction
sets than complex instruction set computing (CISC) CPUs, such as Intels i7. Being cheaper and
smaller and therefore drawing less power and producing less heat makes CISC CPUs ideal for use
in smartphones and tablets.

GPU

The graphics processor unit (GPU) is a very fast and expensive processor specifically designed
for high-speed image processing in graphics cards. Application software, such as Adobe
Photoshop, video editors and 3D games, exploit GPU power to accelerate processor-intensive
calculations.

Storage hardware

Storage hardware retains data and software for both immediate and later use. It comes in two
main types: primary storage and secondary storage.

Primary storage

Primary storage is a computer’s random-access memory
(RAM).It has billions of storage locations in silicon chips. RAM
stores instructions and values including variables, arrays

FIGURE 6.1 RAM modules

and other storage structures when programs are running or
being created. RAM chips are volatile because they lose their
data when electricity is turned off. Dynamic RAM (DRAM) is used as the main memory in
computers; high-speed (and expensive) static RAM (SRAM) is used in graphics cards and CPUs.

Secondary storage
Permanent secondary storage stores data, information and applications when they are not
actively used. Secondary storage includes hard disk drives (HDD), solid state drives (SSD) and
network-attached storage devices (NAS).

Hard disk drives (HDD) are aluminium disks densely crammed with magnetically recorded
bits of 1 and 0. Spinning at up to 10000 RPM, they store and retrieve data at incredible speed,
with breathtaking accuracy and reliability. They are very cheap per megabyte of capacity, and

9780170364744

still the biggest, and most reliable long-term storage medium you can find. In 2015, a 4TB
(approximately 4000GB) HDD cost approximately $200, which works out to about 20GB of
storage per dollar.

Solid state drives (SSD) store data in non-volatile NAND RAM (similar to that used in Flash
drives and SD cards). They have no motors to age and fail, run silently, start up instantly, consume
less electricity, generate less heat, and may access data faster than a HDD. Unfortunately,
NAND RAM eventually loses its ability to be written to, stores less data per square centimetre
of storage space, and is expensive. In 2015, a 128GB SSD cost approximately $105, or around
1GB of storage per dollar.

A network-attached storage (NAS) device is a networked team of HDDs. Using a NAS
offers more speed, capacity (e.g. 12TB), data protection (e.g. hot-swap disks), convenience and
reliability than a simple USB hard disk alone.

TABLE 6.1 Storage units

. Equivalent to
Unit Symbol
RAM Data storage
Byte B 8 bits (1 or 0), the basic unit of storage 8 bits
Kilobyte | KB 1024 bytes 1000 bytes
Megabyte MB 1024KB (roughly 1 million bytes - the size | 1000KB
of two average novels)
Gigabyte | GB 1024MB (PCs have gigabytes of RAM] 1000MB
Terabyte | TB 1024GB (hard disks have terabytes of 1000GB
storage)
1000000GB
Petabyte | PB 1024TB (1 x 104GB)
1000000000GB
Exabyte | EB 1024PB (1 x 10°GB)
1000000000000GB
Zettabyte | ZB 1024EB (1 x 1072GB)
1000000000000000GB
Yottabyte YB 1024ZB 1% 10GB)

Communication hardware

Communication hardware is used for sending and receiving data and information.

Ports are physical sockets or connectors that carry data between a computer and external
devices, often referred to as peripherals. Universal serial bus (USB) is a standardised high-speed
way to connect many devices, including Flash drives, printers, modems, keyboards, mouses,
speakers and smartphones.

As a programmer of a high-level language you will not need to worry about directly
controlling devices such as printers or disk drives. Your programming language will issue
commands such as display this or ‘save this data’ and the OS will negotiate with the hardware
to fulfil your requests. The OS knows how to talk to hardware because each device comes with
a software driver, which is like a dictionary that tells the OS the commands that the hardware
understands. The OS gives a generic command, such as ‘print this, and the driver translates
the command into language that the specific piece of hardware understands. Hardware
misbehaviour is often caused by using an incorrect or outdated driver.

Chapter 6 Programming 221

Network-attached storage
(NAS) is discussed in
more detail in Chapter 3
on page 109.

Storing 1YB would take
2500000 cubic metres of
64GB microSD cards — the
equivalent of the volume of
the Great Pyramid of Giza

THINK ABOUT y.
COMPUTING 6.2

Get online Australian prices
for various sizes of SSD
and HDD. Graph their costs
against their capacity.

In the days before USB,
many manufacturers
invented their own type

of port. Computers were
jam-packed with ports to
accommodate individual
makes of modem, printer,
mouse, keyboard, monitor,
joystick, etc.

Networking hardware —
modems, routers, switches,
cables and wi-fi are
explained in Chapter 3.

222 Computing VCE Units 1 & 2

Windows users can run
services.msc to see
the dozens of tasks the
0S is managing in the
background.

THINK ABOUT y.
COMPUTING 6.3

Linux is a free, open source
0S. Where is Linux used,
and what benefits and
drawbacks does it have
compared with Windows
and Mac 0S?

There are more than 700
programming languages,
but you will not have to
learn them all.

9780170364744

Software

Software is used to control computing devices to process data. There are many types of software
programs used to:
« calculate, such as spreadsheets
. store and organise data, such as databases
« entertain, such as games
« communicate, such as web browsers, email and instant messaging
- control devices, such as embedded software in TVs, toasters and car engines.
Hundreds of other programs exist. These pieces of software are all created by programmers.

Types of software

System software tools are used by a computer to manage hardware and run the user’s programs;
for example, the operating system (OS), device drives and communication protocols.
Applications are used to perform work or complete larger tasks. Popular examples of
applications include Microsoft Word and Excel, Adobe Photoshop and Mozilla Firefox browser.
Utilities are usually small, single-purpose software tools that do a specific job or add
functionality to an operating system. They include text editors, audio format converters and
DVD burners.

The OS (operating system)

An OS such as Windows, Mac OSX, Linux or Android is system software that controls a

computer’s hardware and runs the user’s application software. Operating systems are usually

incompatible with one another, but they all perform similar functions.

« Loading and saving data and programs

. Displaying output and printing

« Processing sound and music

+ Allocating memory for user programs

« Watching the user’s keyboard and mouse activity

« Controlling network and internet access

« Encrypting, decrypting, compressing and decompressing data

« Caching downloads

+ Controlling user logins and maintaining security over accounts, files and access to
resources

« Running background programs to keep the system working efficiently; for example, disk
defragmenters, virus scanners and checking for upgrades

Programming and scripting languages

Programming languages are used to give instructions to computer processors so they can
calculate useful information or carry out tasks for humans. Whether your phone is playing
an MP3, your car is turning on its anti-skid braking, or McDonald’s is calculating staff wages,
programming languages are needed.

9780170364744

Scripting languages conveniently store sequences of instructions that, alternatively, could
be entered one at a time. Like human languages, there are many programming languages, each
with distinctive grammar, punctuation and vocabulary. Most programming languages have
special abilities or strengths that make them more useful than other languages for a particular
task.

Professional programmers know a handful of languages and choose the best language
for each job based on its strengths and weaknesses. Choosing the languages to learn is a big
decision, but remember that learning one language makes it easier to learn others. The most
popular programming languages include C (C++ or C#), Python, Java, JavaScript, Perl and PHP,
SQL and Visual Basic.

« C,C++ or C# is used for writing low-level utilities and fast applications.

« Python is a scripting language used widely across the internet and to control devices.

« Javais used for server-side website programming and for Android apps.

« JavaScript is a client-side scripting language for websites.

+ Perl and PHP are also used for websites.

« SQL, or structured query language, is a scripting language for database programming,.

« Visual Basic is a good first programming language to learn and it is good for prototypes.

While programming languages may differ, they all do basically the same job: they control a
digital system such as a computer, tablet or smartphone.

Programming languages differ in the amount of direct control they give over a computer’s
hardware and operating system. With a high-level language such as Visual Basic or Python,
programmers avoid having to worry about complex details of the structure of actual disk files or
where data is stored in memory. High-level languages are simpler to use, but lack the control of
complex but more difficult to learn low-level languages. Conversely, a low-level language such as
C or machine code requires more skill and knowledge from the programmer, but allows more
direct control of the workings of a computer.

High- and low-level programming languages each have their uses. To write a simple alarm
clock program, a high-level language is fine. To write a device driver to control a printer, only a
low-level language will do.

Software development tools

To develop software, you need a number of basic, essential tools, including an editor, compiler,
linker and debugger. The following section discusses these in more detail.

An editor is a specialised word processor that is used for creating human-readable source
code, or rather, human-readable programming instructions. Code editors come with specialist
features designed to make programming easier, such as highlighting programming keywords,
detecting unbalanced parentheses and adding line numbering. Programming editors, such as
the one shown in Figure 6.2, show colour-coding, indenting, collapsible text and line numbering.

A compiler converts source code into executable programs that a computer can carry out;
thatis, that a particular central processing unit (CPU) and operating system, such as Windows
or Mac OSX, can understand.

Chapter 6 Programming 223

SQL is covered in more
depth in Chapter 8,
beginning on page 314.

THINK ABOUT y.
COMPUTING 6.4

Research three popular
languages to discover their
origins. What did existing
languages lack that led

to the need for the new
languages?

C has both high-level
features (for example, FOR
loops and arrays) and low-
level features (for example,
memory pointers and
byte-level operators) making
it popular and suitable for
many 0ccasions.

224 Computing VCE Units 1 & 2 9780170364744

THINK ABOUT y.
COMPUTING 6.5

Research online to choose
a popular code editor.
Examples are Notepad++
and Programmer’s Notepad.
What features does it
possess that make it better
than a plain text editor for
creating source code?

Part of the difficulty of
porting is that programs
must often be substantially
changed to work under a
different operating system.

Refer to page 253 for more
information on GUI objects.

Refer to page 235 for more
information on interfaces.

Refer to page 232 for more
information on objects.

321

322Hfunction getState(stsDOC, stsDSC, stsDIS5, stsDBS, stsDWS)
345

346 Hfunction getStateReason(stsDWS, stsDOC, stsDSC)

347 | {

348 var stateReason = '';

349

358 if(typeof stsDMS !== 'string' || stsDWS === "" ||
351 typeof stsDOC !== 'string" || stsDOC === "" ||
352 typeof stsDSC !== "string’ || stsDSC === "'

353 ¥ £

354 return "'

355 }

356

3578 if (stsDSC !== 'NO' || stsDOC '== 'NO’) {

358|k stateReason = 'AttentionRequired’;

3500 } else if (stsDSC === 'NO" &R stsDOC === 'NO' BE stsDWS === '198@8") {
36'B-|k stateReason = 'Paused’;

3610 } else if (stsDSC === 'NO" && stsDOC === "NO" EE stsDWS === "NO') {
362|k stateReason = 'None';

363 T else {

364 L stateReason = '';

365 1

366

387 return stateReason;

368 L}

369

FIGURE 6.2 A programming editor

Executable code compiled for one platform will not work on another without being ported
(re-compiled for another platform). Porting is hard and expensive work; this is one reason why
many apps are available for Windows but not Mac or vice versa.

A linker loads information that the executable code will need; for example, how to read a
keyboard or how to calculate square roots. Linkers come with useful pre-written code libraries.

A debugger helps programmers to find bugs - or programming errors. Sometimes debugging
can take as long as the original programming time, or even longer if the program has been
poorly designed. Debuggers may:

« highlight incorrect syntax (programming expression) and show how statements should be
expressed

. allow programmers to set break points in code, where the compiler will stop and let the
programmer inspect the current values of variables

. allow line-by-line stepping through code so developers can find exactly where a problem arises.

Few programmers today use separate editors, compilers, linkers and debuggers. Most use an
Integrated Development Environment (IDE) such as Microsoft’s Visual Studio to combine the
development tools into a single package.

Figure 6.3 shows:

1 the toolbox of graphical user interface (GUI) objects the programmer can insert into the
program

2 the code window, which the programmer uses to instruct the program how to act when
an event takes place, such as the clicking of a button

3 the form, which will be the visible interface for the program’s user

4 the properties of the selected object, which let the programmer modify an object’s
characteristics or behaviour

5 the project manager with which the programmer can manage the various files and
components related to the program

6 onscreen help to give brief reminders of what the currently selected object is like.

9780170364744 Chapter 6 Programming 225

= WindowsApplication - Microsoft Visual Basic 2010 Express -
cEle fdt e EBrolect Rebug Dats Fgemat. ool Window, Help : "
i@l s anR 2|90 - asmfEsE|SSe@ o 1

|" Toalhoe MLl Form |vb [Design]® = Solufion Fxplorer X
 All Windows Forms 3 : _ ElaAlEd
| BT ug Change Calculator B Vindowirppisiniont
% BackgroundWorker il My Project
#2 Bindinghavigator =] Form1.vh
‘J o Change Calculator
B BindingSouice
(@ Dutton e
< — i =t T
EY CheckedListiox) R
] Colerbialog Tendered Caleuate htnClear System Windows Forms Button .
;$ ComboBox . Changn § e e (= :
E._ ContexthMenuStrip n Flathppearance o
G DatairidView FlatStyle Standard
28 DataSet » Fent Micresoft Sans Serif, £
T DoteTimePid “ frmChange -| i Declarations) 5 ForeColor Wl ControlTest
[E] DirectoryEntry =Public Class frmchange = GenerateMember True
I DwectorySearcher = Private Sub btnCalc Click(Byval sender As Syctem.cbject, Byval e As System_ Eventargs) Image] tnone)
3 DomaindpDows Dim sngChange, sngTendered, sngfost As Single Imagedlign MiddleCenter
p ; sngTendered = val(tytTendered) Imagelndex] tnone)
@ EmorProvider snglust = Val(txtCast)
¥ Imagekey m (none)
{5 Eventleg Tl sngfost > sngTendered Then | Vit Taan
= " MsgBox("InsulTicienl payment™) b il e
}5;] FileSystemWatcher iiee RS 261,72
1 FlowLayoutPanel sngChange = sngTendered - snglost Locked Talse
& FolderBrowserDislog txtChange.Text = C5tr{sngChange) Margin 3,3,33
@ FontDisleg - E": IF MaimumSize 0,0
™ Groupbox t Lt > MinimumSize 0,0
HelpProvider Private Sub btnExit Click(ByVal sender As System.Obicct, ByVal e As System.Eventirgs) Medifiers Friend
#1¥ HScrollBar End > Padding 0,000
End Sub i
& Imagelist e RightToleft Mo
Size 75,25
A Label = Private sub btnClear_Click(bByval sender As System.Ubject, Byval e As System.tventirgs Tobindex 7
A LinkLabel txtLhange.Llear() Fahs T
58 ListD txtlost.Clear() Aop: Lo
= I om txtTendered. Clear() Tag
33 ListView End Sub Tet haigiiagd
®] Masked| extBox TestAlign MiddleCenter v
= i Sid Pless :
&= MenuStrip . Text
P MessageQueue 100% - The text associated with the control. 6
[MonthCalendar v

FIGURE 6.3 An example of an IDE

Storage structures

A storage structure isalocation in RAM where data is stored during the execution of a program.

The two main data storage structures are variables and constants. Variables are so-named

because the value stored in a variable can vary, or be changed by a program. Constants, on the

other hand, have fixed (unchanging) values during a program’s execution, such as the value of

pi, or the number of the Australian states and territories.
Arrays can store many values in numbered ‘slots’. For example, to store 12 monthly rainfall

figures, create an array called intRain[12] to house 12 values. To address (refer to) an

individual value, give the name of the array and the desired index (slot number); for example:
IF intRain[1l] < intRain [1?} THEN Using variables and

DISPLAY “January was drier than December!” arrays is discussed later in

END IF this chapter.

Data types

Most languages want programmers to declare the type of data that needs to be stored, so they
Chapters 7 and 8 discuss

can most efficiently store the data. After all, if someone asks you for a box, do they want to store ,
data types in greater depth.

a pair of shoes, a wild cat or a widescreen TV? Knowing the intended contents lets you choose
the container of the best size and type.

All programming languages support various data types for variables and arrays, but they
differ in what types they support. Most languages support text (string), integers, floating point
(real) numbers, date/time (timestamp), and Boolean data types, as described in Table 6.2.

226 Computing VCE Units 1 & 2

Languages differ in how
they treat floating point
numbers. A single precision
variable may use 4 bytes of
memory to store a value up
to about 38 digits long, with
7 decimal places. Double
precision is much bigger!

THINK ABOUT &.
COMPUTING 6.6

Look into the specifications
of the programming or
scripting language you are
using and find the minimum
and maximum values that it
can store in an integer.

THINK ABOUT y.
COMPUTING 6.7

List the data types your
language supports. Identify
their purposes.

Byte measurements are
confusing. Since 1998,
official IEC standards say
that a kilobyte is 1000 bytes
and 1024 bytes is now a
‘kibibyte’. Many ignore

that and use the traditional
1024 byte kilobyte.

9780170364744

TABLE 6.2 Common data types

Data type ‘ Description

Text (string) | Alphanumeric characters and punctuation - any group of characters that can be
typed, such as Tom Smith, *Hello* or 123abc.

Numbers can be stored as string, but cannot be used for calculations in that form.
Use strings to store phone numbers like (03) 3945 2394, because strings can
hold parentheses, leading zeroes and spaces while numeric types cannot.

Integers Whole numbers with no fractional part, suchas 1, 0, 3, 67and 341567
Fractional data is lost when stored as integers. Integers require little RAM.

Floating Numbers with fractional parts, such as 2.42. Floating point numbers use more

point (real) RAM than integers. Types include single precision and double precision.

numbers

Date/time Calendar date and/or time of day. Using date/time data type allows programming

(timestamp] | languages to perform complex time and date calculations.

Boolean Stores only two values: true or false. Although this may not sound very useful,
computers spend a lot of time making true/false decisions and the dedicated,
concise Boolean data type saves a lot of RAM.

Character A single character only, such as M, F or $

Byte An integer between 0 and 255

Currency Numeric, for storing monetary values only; it has a large number of decimal
places to prevent rounding errors

Pointer C uses this special data type to store pointers to the locations of items in RAM

When you select a data type, you should choose wisely so that you will not lose vital
information. For example, if you chose to store a floating point number in an integer variable,
it would lose its decimal places because, as described in Table 6.2 above, integer data types do
not store decimal places. Conversely, small integers do not always need to be stored as floating
point numbers, particularly very large ones such as double precision, because they are small
and using large data types will just waste RAM and slow down your execution. Thus, when
choosing data types, consider the form of data and its size.

You should also think about both current and future needs. For example, Kelly is
programming an employee database for a company that has 30 employees. She chooses ‘byte’
data type for the variable to hold the number of employees. Six years later, the company has
grown considerably and now has 256 employees. Kelly's program crashes as soon as employee
number 256 is entered into the system, because byte variables can only store numbers up to
255. Kelly’s conservative choice of data type killed her software.

Media data types

A medium is a channel or means through which data and information are sent or stored. In
information and digital systems, multimedia means the use of several media, such as video,
audio, text and photographs, to convey information. Storage media are ways of storing data,
and include Blu-ray, SSDs, HDDs and the cloud.

Media are data-hungry. An 30-minute audio file uses 6-30 MB of storage. Video can consume
20 times that amount. A digital photo can be anywhere from a few kilobytes (KB) to several
megabytes depending on its quality.

Data storage is measured in bytes. One byte is made up of 8 binary bits (1 or 0). A kilobyte (KB)
is approximately 1000 bytes. A megabyte (MB) is approximately 1 million bytes. Transmission
speeds are usually measured in bits per second, not bytes. In abbreviations, byte is represented
by the uppercase ‘B, and bits use b, so 56 Mbps means 56 million bits per second (7 million
bytes per second). Do not confuse bits and bytes! Refer back to Table 6.1 on page 221 for more
information on data storage units.

9780170364744 Chapter 6 Programming 227

The quality of stored media involves their resolution and compression, which is discussed
in the next section.

Resolution

Resolution is a measure of how much detail is in:

« images (dots per inch when printed or pixels per inch when onscreen and colour depth)
« video (frames per second, frame size and bitrate)

« audio (sample rate or frequency, bit depth and number of channels).

The higher the resolution, the more realistic the reproduction will be, and the bigger the
media file... and the longer it will take to transmit. Choosing a level of resolution for media
usually involves a compromise between quality, cost, storage requirements and the time needed
to transmit.

Compression
Bulky media are usually compressed before being stored | s @
or transmitted. |r e S

Lossy compression shrinks media by throwing away = e §
details. Common lossy media formats are used to shrink: | —
.« photos, such as JPEG Medium e B |
. video, such as DivX, MKV and WMV !

audio, such as MP3 and WMA. 1 Very High

i' Maximum |

JPEG collapses similar colours into a single shade.
FIGURE 6.4 Setting the

)) compression level when using the
MP3 removes low or high musical notes that most «gaye for Web’ option and saving

MKV may reduce the number of frames per second.

people cannot hear. When users choose a level of lossy as a JPEG in Photoshop.
compression, they must balance quality against size.

Lossless compression file formats (such as GIF, PNG, TIFF images, and FLAC audio) reduce
media size as much as possible without losing data. They work by summarising data. For
example, instead of recording 500 blue pixels individually, it says, “The next 500 pixels are blue'.

JPEG format is designed to store photos with subtle colour transitions. GIF is designed to
store images with big blocks of solid colour, using a palette of only 256 colours. This explains
why JPG is a poor choice for storing logos, as GIF is for storing photos.

Text is never stored in a lossy format; throwing away little words or changing big words into
similar smaller words to save space would not be not wise! Text formats include:

« plain text (txt), which stores nothing but text characters

« comma-separated values (CSV) or tab-separated data files

« rich-text format (RTF), which includes formatting tags, such as HTML

. portable document format (PDF), which is a searchable, compressed format that can

be viewed in its original and perfect formatting without using the obscure or expensive

software that created it
« proprietary formats such as DOCX and WPD that have detailed formatting, images and

metadata (data about the text).

Image colour information is stored in two different ways. Images to be viewed on monitors
are stored as RGB with three bytes representing the brightness of a red, a green and a blue
pixel between 0 (off) and 255 (fully on). Images intended for printing use CMYK to describe the
strengths of the four ink colours - cyan, magenta, yellow and black.

THINK ABOUT y.
COMPUTING 6.8

Research the resolutions
used for laser printing,
phones and monitor
screens. How do the
differences affect file size?

When saving JPEG files,
the ‘Quality’ compression
number is not a percentage.
It just means ‘a little bit’

or ‘alot’.

THINK ABOUT y.
COMPUTING 6.9

Using free software such as
Audacity take an audio file
and save it with different
sample rates (e.g. 8 KHz and
44,1 KHz) and sample sizes
(e.g. 16-hit or 32-hit) in
mono and stereo. Compare
the sizes of the files and
sound qualities.

Detail lost during lossy
compression can never
be restored. Always keep
original, uncompressed
master copies of media for
later use.

228 Computing VCE Units 1 & 2

THINK ABOUT y.
COMPUTING 6.10

Find a digital logo with a
couple of solid colours,

and a digital photo of a
landscape. Using an image
editor like Photoshop or
GIMP, load both images and
save them under both JPEG
and GIF with new names.
Compare the file sizes and
image qualities. Now try
saving the JPEG image with
increasing compression
levels. Graph the sizes and
subjective assessments of
the image quality.

Problem-solving
methodology is explained
further in Chapter 2.

9780170364744

THIS IS A MAIN HEADING.

This text is in bold.
Italics here.

FIGURE 6.5 A document in print layout when using word processing software

{\plain \fs36 \b\fl1l\fs36 {\tc {This is a main heading}{\plain \
£536 \b\£s36 .}}\par

Y\pard \fs24

{\plain \fs24 \b This text is in }{\plain \fs32 \b\fs32 bold}{\
plain \fs24 \b .}{\plain \fs24 \par

}{\plain \fs24 \i Italics here.}{\plain \fs20 \fs20 \par

FIGURE 6.6 Part of the same document, saved as RTF

Developing software

The software development used in VCE Computing can be applied either as the single
stage-by-stage process of the problem-solving methodology (PSM) or to each iteration of an
agile problem-solving process. An agile process is a flexible and responsive approach that
allows a return to earlier production steps when needs change; for example, if changes in
technology force a radical redesign of the product, the client wants to add new functionality, or
market pressures force a change of direction.

PSM stage: Analysis

The task of this stage is to develop the software requirements, both functional and non-
functional.

Functional requirements
Functional requirements describe the tasks that a program should be able to perform. In the
simplest terms, these are the things a program must be able to do — the main reason for creating
it. For example, a program’s functional requirements may specify that it must be able to:
« edit, crop and touch-up illustrations and photos
« create illustrations
« create handwriting typefaces.

The functional requirement or requirements are usually achieved in a specific and identifiable
place in a program or a solution, such as a particular formula or a piece of programming.

Non-functional requirements

Non-functional requirements describe the attributes or qualities that your solution should have.
Using the design program as an example again, its non-functional requirements may require it
to be the following: precise, flexible, fast and easy to use.

A non-functional requirement will probably not be achieved in one specific place in a
program. It usually requires a combination of factors across an entire program. For example,
achieving ease of use in a design program may involve building in simple menus, shortcut keys,
context-sensitive help, using clear language and making sure the interfaces are user-friendly in
many different places.

9780170364744 Chapter 6 Programming 229

The results of the analysis stage, comprising solution requirements, constraints and scope,
are recorded in a document called solution requirement specifications, or SRS. In this Outcome,
your teacher will give you the analysis.

Constraints

Constraints are limiting factors or conditions that you need to consider when you are designing
aprogram. A constraint will usually reduce your freedom of design choice. Constraints generally
fall into five categories: economic, technical, social, legal and useability.

Constraints on a program

[[]

Economic Technical Legal
’_l_‘ |
[[|
Cost e Speed pf Capacity Ava\lgb'\lity Compatlblllty Ownership Prlvacy of data
processing of equipment and security requirements
Example: Example: Example: Example: Example: Example: Example: Example: Any
Hiring Program will Program Program will Program Program Program data used to
additional take 11 needs take up at requires will be ownership to develop
programmers months to torunona least users to compatible be retained program
to help build build and computer 400MB disk have a with Mac by should be
the program deliverin full with space graphics devices only developers de-identified
is expensive at least 4GB tablet and licenced
RAM for installed by company
optimal commissioning
performance it

FIGURE 6.7 Constraints on a program

PSM stage: Design

Design is a vital stage in starting to create a good program, and there are several acknowledged
good practices to observe.

Software design uses various tools to plan a programs architecture (how it will be
constructed) and its appearance. The following sections discuss several types of software
tools that can be used to help plan a program’s architecture: data dictionaries, data structure
diagrams, input-process-output charts, pseudocode, object description and interface
mock-ups. You may find these tools useful during the development of your Outcome. Each
design tool has its own specific purpose and reason for existing. If you ever find yourself using
a design tool that gives no more information than that already provided by other design tools,
you are probably using it incorrectly.

TABLE 6.3 Tools to plan a program’s architecture and appearance

Design tool Designs

Data dictionary Data types, names, formatting, validation

Input-process-output (IPO) chart | Output and data requirements, calculation strategies (algorithms)

Data structure diagram Structure and relationships within and between data items
Object description The behaviour and properties of components

Pseudocode The logic behind processing

Mock-up The appearance of output and the user interface

Data dictionaries
For more information on
data dictionaries, refer

such as textboxes and radio buttons. The data dictionary should list every structure’s name and data to Chapter 8, page 312.

type. It may also include the data’s purpose, source, size, description, formatting, and validation.

A data dictionary is used to plan storage structures including variables, arrays, and GUI objects

230 Computing VCE Units 1 & 2 9780170364744

TABLE 6.4 Data dictionary

‘ Format ‘ Size ‘ Purpose ‘ Example
txtCustomerID |Text XXX99 5 Customer ID SMO040
dateDOB Date YYYY-MM-DD Fixed |Date of birth 1992-12-28
sngSales Single precision |$##,### ## |Fixed Total amount spent $12,456.78
boolClubMember Boolean Yes/No Fixed |Is a member of the Yes

buyer’s club?
txtFamilyName |Text XXXXXXXXXXXX |25 Customer family name De Silva
txtFirstName Text XXXXXXXXXXXX |15 Customer given name | Horatio
intAge Integer 999 Fixed Ageinyears 34
intMemYears Integer 99 Fixed |Years a member 12

Data dictionaries are valuable when code needs to be modified later by other programmers
and the purpose of a variable or array is unclear.

Object naming
Creating clear and obvious names for your programss variables, arrays, GUI controls, forms and
windows makes your source code more readable and maintainable over time. It also makes it
more easily understood by programming colleagues, and will save you some time after you have
finished the code.

Descriptive names make it easier to know what an object is for, and how it should be treated.
For example, the name "Temperature’ is much more informative than T".

There are two industry-standard naming techniques.

Hungarian notation involves adding an object’s type as a prefix to its name, such as
intTemperature for an integer, or 1blHeading for a label. This practice is particularly
common in databases and programming. The prefix reminds programmers how the object
should be handled; for example, you would not accidentally try to change the Multiline property
of 1blHeading because the 1b1 party reminds you that it is not a textbox and does not have
a Multiline property.

CamelCase involves the use of capital letters to mark the start of new words in a file or
object name. Multi-word names can be hard to read in a name that has no spaces, such as
inttemperaturecelsius, but programming languages forbid spaces in names. In
situations like this, CamelCase helps by capitalising the initial letter of each word in a name, so
inttemperaturecelsiusbecomesintTemperatureCelsius.Usinganotherexample,
in the filename annualcompanyauditreport2017.docx, the initial capitals system of
CamelCase would make things much easier: AnnualCompanyAuditReport2017.docx.

The way that files are named is very important. Get started with best practices early.

« Use underscores (underlining) instead of spaces; for example, z_dev_MediaGrid. fmp
instead of z dev MediaGrid.fmp.

+ Keep names short but meaningful; for example, some of the most common programs have
short but meaningful names: WINWORD.EXE, Acrobat.exe, and so on.

« Be consistent; for example:

~ intTemperatureCelsius.xlIsx, intTemperatureFahrenheit.xlsx,
intTemperatureKelvin.xlsx

0 inttemperaturecelsius.xlsx, intTemperatureFahrenheit.xlIsx, int
Temperature Kelvin.xlsx

9780170364744

+You will be unable to use characters forbidden by the operating system, which include the
following punctuation marks in Windows:
<>\

Data structure diagrams

A data structure diagram shows the structure and relationships within and between the data
items in the data dictionary. A data structure diagram does not repeat information already
present in the data dictionary; that would be a waste of time.

CUSTOMER

ID NAME SALES MEMBER? DOB

FIRSTNAME ~ FAMILYNAME SINCE_YEAR AGE

FIGURE 6.8 Example of a data structure diagram

Input—-process-output (IPO) charts

IPO charts help programmers to design formulas and algorithms. An algorithm is the strategy
for a calculation. A few steps must be followed to create and complete a chart correctly. First,
enter the information required, such as a person’s age, into the Output column.

Next, ask what data is needed to calculate that output. To calculate a person’s age, we need to
know two things: Date of birth (DOB) and the current date. Enter these into the Input column.

Finally, work out what kind of processing (algorithm) needs to be done on the input to
calculate the desired output. Enter this algorithm into the Process column as pseudocode — do
not write source code.

The second row of Table 6.5 below uses our example of calculating a person’s age in years.
The algorithm in the Process column describes a technique for calculating the answer. Find and
then subtract the number of days between the birth date and now, and divide that by 365 to get
years. The IPO chart can now be completed.

Row three of Table 6.5 calculates a subtotal by multiplying quantity by cost per item. Row
four calculates total cost by taking a subtotal amount and adding tax (if payable) by multiplying
the tax rate percentage by the subtotal. Row five uses a condition: if age is greater than 60 years,
then total cost should be total cost minus the total cost divided by discount rate percentage.
This becomes the senior citizen cost, the output.

TABLE 6.5 An IPO chart

Input (data) Process (algorithm) Output (information)
DOB (Current date - DOBJ / 365 Age in years
Current date

Quantity Quantity * Cost per item Subtotal

Cost peritem

Is tax payable? Subtotal + Total cost

Tax rate % (If tax is payable, subtotal * tax rate %)

Age in years Senior citizen cost

Total cost

If age in years >= 60,
Total cost - (total cost * discount rate %)

Discount rate %

Chapter 6 Programming 231

A bad algorithm can make
a program slow, fat or
unreliable. A good algorithm
can make a program
responsive, small and
trustworthy.

Every calculation — even
the really simple ones —
should be designed and
put in the IPO chart. Later
programmers might need
that information.

232 Computing VCE Units 1 & 2

See Chapter 2 for more
information on IPO charts.

Pseudocode is probably
the most important tool
for students of Software
Development VCE Units
3&4.

9780170364744

Notice how the information from previous calculations is often used in later calculations.
The IPO chart can then be given to a programmer and the algorithm converted into source

code for any chosen programming language.

Object description

In programming, an object is any item that a program can inspect and/or change in terms of

its appearance, behaviour or data. Today, object-oriented programming (OOP) is a common

practice. OOP focuses on objects, such as icons, menus, buttons and listboxes, in a GUI that a

user manipulates to issue commands and display information. OOP objects have properties,

methods and events.

1

Properties are the attributes of an object, such as width, colour, size, name and visibility.
For example:

listboxl. width = 200 sets a property.

Methods are the actions that an object can carry out, such as move, refresh, setfocus or
hide. For example:

mainwindow. refresh uses a method of the window.

Events are actions or occurrences that an object can detect and respond to accordingly,
such as a mouse click, key press or a timer going off. Each event usually has its own
procedure, which describes what will happen when the event occurs. For example:
txtFamilyName. keypress responds to a users typing into the Fami1yName textbox
object.

An object description is a way of describing all of the relevant properties, methods and

events of an object.

OBJECT: txtName
PROPERTIES

Class: textbox
Left position: 300
Width: 500

Font: Arial
Justification: left
Visible: yes

Font colour: black

METHODS

Cut: save cut text to disk

EVENTS

Keypress: if key is CTRL+[set text justification to left.

FIGURE 6.9 Example of an object description

Pseudocode
Writing an algorithm in source code is slow. An algorithm written in source code also limits

itself to use in only one compiler. Pseudocode, also known as Structured English, is a quick,

flexible, and language-independent way of describing a calculation strategy — halfway between

9780170364744 Chapter 6 Programming 233

English and source code. Once the algorithm is sketched out in pseudocode, it can be converted
into source code for any desired programming language.

A good algorithm can be extremely valuable and bring forth great change. A clever strategy
can make software run twice as quickly or use half the amount of RAM. An ingenious idea
can lead to the development of a program that was once considered impossible. For example,
Google’s PageRank completely changed the way the world searched the internet, and made
billions of dollars for its inventor in the process. The invention of public key encryption finally
cracked the age-old problem of how to encode and transmit secrets without having to also send
an unlocking key that could be intercepted.

This pseudocode determines if a year is a leap year:

if (year is divisible by 4 and not divisible by 100)
or (year is divisible by 4 and 100 and 400) then
it’s a leap year
else
it’s not a leap year

end 1f

The rules of pseudocode
What are the rules of pseudocode? Easy: there are none. As long as the intention of the
calculation is clear, it is good pseudocode. If not, it is bad.

However, ensure that you specify assignment (the storage of a value) using the x*® symbol
rather than the equals sign (=) that is used in algebra and in most real programming languages;
for example:

IsLeapYear xX'@ True
The equals sign is reserved for logical comparisons, such as:
IF B=0 THEN CALL SoundAlarm

Common features found in pseudocode include:
+ loops, such as WHILE/ENDWHILE and FOR/NEXT
- control structures, especially IF/ELSE/ENDIF blocks
+ logical operators — AND, OR, NOT, TRUE and FALSE
. arrays, such as Expenses [31]
. arithmetic operators (+ — * /)and the familiar order of operations, as used in Year 7

Mathematics and Microsoft Excel spreadsheet formulas.

Pseudocode punctuation and the names of key words are largely up to you if it is clear
what you mean; for example, it does not really matter if you prefer WHILE/WEND or WHILE/
ENDWHILE.

To ‘Get data from keyboard’, you could use INPUT, GET, FETCH, or another keyword. To
read data from a disk file, you could choose INPUT, GET, READ or something else. To avoid
ambiguity, you could explain your pseudocode’s conventions using comments, as shown in the
example on page 234.

‘Pseudocode’ literally
means ‘false code’.

Google PageRank
checker

THINK ABOUT y.
COMPUTING 6.11

Use a testing table to check
whether the leap year
algorithm works for the
years 1999, 2000 (which
was a leap year), 2020
(also a leap year) and the
current year.

234 Computing VCE Units 1

In VCE Computing it is not
mandated that you use
software to create your
mock-ups. You may use
software such as Balsamiq
Mockups if you wish, but
you may also create them
by hand using pen and
paper.

&2 9780170364744

The hash symbol precedes a comment
GET reads the keyboard.
READ loads data from a disk file.
DISPLAY shows output on screen.
WRITE saves output to a file.
DISPLAY “What is your name?”
GET UserName
OPEN FILE “Users.txt”
READ data for UserName
IF new data exists THEN

WRITE new data to file
END IF

Interface mock-up

If software will be used directly by people (rather than running hidden deep in the OS), it needs an
interface — a place where people can control the program, enter data and receive output. A successful
interface cannot be cobbled together. It must be carefully designed to make it usable and clear.

To design an interface, use a mock-up, which is a sketch showing how a screen or printout

will look. A mock-up should typically include the following features.

The position and sizes of controls such as buttons and scroll bars

The positions, sizes, colours and styles of text such as headings and labels
Menus, status bars and scrollbars

Borders, frames, lines, shapes, images, decoration and colour schemes
Vertical and horizontal object alignments

The contents of headers and footers

BLAck
Aa— T pr
Conirfed
-
Corr e ey (_AL_gol_A-rgﬂ\ Jleen
back_
all fk ; ;
labass A LR A eI Brou l-l-ud-hou f
Ariad y ey tF : h 3
h'-k : &) t(“"‘ﬁﬂeﬂﬁte}@ ? \(bpﬂ(_bb\ﬁ\) \5\\; .
P e ey BN el
LRSS
"9 4:. TP
n'\ﬂf\-b-h
OS HKxx . xx = FAUD wxr, xx
laioe)
2 deciimon
: ‘-\(\kakmr CaLTRACHE § - Y - P
WAL (Mmoo q":iw:_') (Crear | - **** —al.s',.\

1
W
‘E A \‘"H‘%‘x‘.

Clears
Comve boxes
& Amon N
B LonialSio A laloed Pt +exr .

A ek ‘v o
h-__—-—

FIGURE 6.10 A mock-up of a screen interface

9780170364744

A mock-up can be considered successful if you can give it to another person and they can
create the interface without needing to ask you questions.

Creating effective user interfaces

Very good interfaces are difficult to make because human beings are individuals. We have
our own preferences and operate differently depending on gender, experience and cultural
background. However, to create usable interfaces, the same several factors must be always
considered and applied: useability, accessibility, structure, visibility, legibility, consistency,
tolerance and affordance.

Useability

Software needs to do more than just create accurate output. It must let users work efficiently
and require minimal learning, memorisation and stress. You should make commonly used
features the quickest and easiest to find. Do not hide basic functions deep in a menu, because
users will find it frustrating.

Superheroes of Design

File Edit Select Create Optimise View Tools Window Help 'i
e ——————1
Blank CTRL4+N QuickStart | Manual /
Typeface drawi
i oS From clipboard CTRL+Y
From template »
MNew photo
® New typeface
New signature
JRGE Approve
CMYK
Grayscale
Reject
Convert
Preview
(¥
&

FIGURE 6.12 Ease of use: Although this mock-up looks easy to use, users would normally
expect that creating a new document of any kind, such as the new typeface, is usually a menu
option contained within the ‘File’ menu at the far left, which may make this interface less useable.
This is something to consider.

There are many ways to provide help for your users. Consider providing printed manuals,
quick start guides, internet help guides, context-sensitive help, onscreen instructions, pop-up
tool tips and/or examples.

Chapter 6 Programming 235

Characteristics of
effective user interfaces

Useability
Accessibility
Structure
Visibility
Legibility
Consistency
Tolerance

Affordance

FIGURE 6.11
Characteristics of
effective user interfaces

236 Computing VCE Units 1 & 2

-0 X

|8uperharoes of Design
File Edit Select Create

Optimise View

Tools

Window Help

Typeface drawing panel

[.Draw the text you want to turn into a typeface in l

the space below using a graphics tablet and stylus J

!QuickStort AMunud f ﬁl

9780170364744

Scroll bar
(affordance)

Quick start guides
and manuals

Pop-up tool tips

)

Approve
Onscreen

instructions

Reject

Convert

Preview

2

FIGURE 6.13 Tool tips, quick start guides, manuals and onscreen instructions make this interface
somewhat easy to use. What else would make this interface even easier to use?

x 75% complete

Deleting 484 items from temp
75% complete

- Speed: 89 items/s

Marme: 121TSD.5_2014_template.docx
Time remaining: About 3 seconds
lterns remaining: 120 (16.5 ME)

@ Fewer details

- N

Another useability factor to consider is showing progress.
Few things cause users more anxiety than when a program gives
no indication about what it is doing. Has it frozen? Is it deleting
everything on the computer? I need to leave in five minutes — what
is this machine doing? Computer users panic easily when programs
stop communicating with them. Give the user some reassuring
feedback about the operations status with a progress bar, an
estimate of time remaining, a spinner — anything to stop users
reaching for the unresponsive computer's reset button (Figure 6.14).

Affordance

FIGURE 6.14 Showing progress during a long operation

] NetSpeedMonitor

General | Layout | Database | Tooltip | Advanced

Network Interface
Qualcomm Atheros ARB101PCIEGe v | (< ||>| | +3

Bitrate: KiDfs Turn Monitoring Cn

Predision: 000 W

Application Scttings
language: | English vi| @
Double Click: | 5t Monitoring On/fOfF v

[Automatically chedk for Updates Check now

Cancel | Apply

[ok |

FIGURE 6.15 A small form using tabs and
dropdown lists to prevent overcrowding

THINK ABOUT }7.
COMPUTING 6.12

What forms of colour
blindness exist?

Affordance refers to the concept that objects on your interface

should immediately suggest what they do and how to use them. An

interface with good affordance naturally leads people to use it accurately,

efficiently and intuitively to accomplish their goals.

The shadow effect on a button suggests it should be clicked with a
mouse.

A scroll bar looks like the natural thing to do would be to drag it up
and down.

A flashing red icon instinctively suggests a problem.

Accessibility

In software development, accessibility refers to catering for the disabilities

or special needs that your software’s users may have.

To cater for colour blindness, avoid putting green text on a red
background.

To cater for poor eyesight or low vision, do not make text too small.
To cater for those who have limited hand coordination, make buttons
larger and space them further apart.

To cater for those who have limited reading ability, use short words
and avoid colloquialisms and jargon.

9780170364744 Chapter 6 Programming 237

Structure

You should organise any user interface that you design quite deliberately so that it makes sense
to end users. You could base it on existing models that users are already familiar with, rather than
changing fundamentals. For example, Figure 6.12 moves the creation of a new typeface document
from the File' menu to a new menu ‘Create’ away from the top left, and this is a needless shift. It
differs from a working model that is what users already expect. Part of a working structure that
you could use would move this grouping back to the ‘File’ menu, as shown in Figure 6.16.

_u:%l
i

Superheroes of Design

[Flle Edit Select Create Optimise

View Tools Window Help

Blank CTRL+N QuickStart f Manual /
New typeface

New signature

From clipboard CTRL+V

From template »

New photo

Open CTRL+O Approve
Open recent »

Close

Save CTRL+S

Save as > Reject
Print CTRL+FP

Exit

» [«

FIGURE 6.16 Structure based on a consistent, recognisable model

You should also put related items together so they are easier to find, and separate distinct
items in clear, sensible groupings. Ensure that users do not need to hunt across several forms,

menus or screens to carry out related actions. See the example of a GIMP interface shown in Download interface design

Figure 6.18. style guides from Microsoft
Software users do not want to have to learn each programmer’s personal stylistic preferences. and Apple (search for
‘windows style guide’ or

.) . ‘apple style guide’. How do
are and how they work. For example, in Windows, the software version is found under the Help their styles differ?

They want to start a program and use standard techniques, knowing instinctively where things

menu > About, and the Help menu is always the right-most menu item. Do not put it elsewhere
just to be different!

Software consistency is no accident. All major software developers publish style guides
giving programmers instructions about how to design software for their platforms. To ensure
software is predictable and easy to learn, some major software companies will not certify
software unless it obeys their guidelines.

Visibility
Visibility in a user interface means that the tools and options that the user needs to perform a

specific task should be visible to them without them being distracted by superfluous information.
Ifauser does not need to see extra information to make a decision to approve or reject a character

238 Computing VCE Units 1 & 2 9780170364744

they have drawn in their typeface, then do not show it to them. For example, the thumbs up or
thumbs down Approve/Reject step shown in Figures 6.12, 6.13 and 6.16 will suffice.

You should only show as much information as a user needs to make a decision or proceed
to the next step, and no more. Overwhelming visual detail can make an interface confusing and
undesirable.

Instead of squeezing many objects onto a small form, use multiple forms, tabbed controls,
pull-down menus and combo boxes that collapse when not needed (Figure 6.15).

An uncrowded interface is even more important when programming for mobile devices
with small touchscreens that will be operated with big fingers.

Legibility

Promote ease of use and reading comprehension by ensuring that the information on the

user interface is noticeable and clearly distinguishable, and that any text that appears on the

interface is readable. (Refer to Chapter 2 for more information on design principles and formats

and conventions, which cover the contrast aspect of legibility in more detail.) Legibility deals

with aspects including contrast, leading, kerning, line length and font size.
For interfaces:

- avoid using text in all uppercase

+ use underlined text only to indicate hyperlinks

« use familiar, plain typefaces designed for reading onscreen, because decorative typefaces
can be hard to read

« beware of overusing bold, italic and other font effects — not everything needs to be called
out

« left-align text

« apply a hierarchy, with important things larger than less important things

« use appropriate contrast between text colour and background colour to maximise readability

- make smart use of white space; an interface crowded with controls is ugly and can lead to
errors if users accidentally click the wrong item.

Tolerance

Tolerance is the capacity of software and interfaces to compensate for a user’s errors and cope

with peoples natural differences in how they carry out tasks. An interface that forces users to

obey its rigid expectations and is unforgiving of individual variation will be unpleasant and
difficult to use.
Here are some examples of tolerant practice.

 Allow users to cancel or undo actions, and do not lock them onto a path from which they
have no escape, such as printing 300 pages with no option to cancel.

« Provide settings and preferences so users can adjust a program’s behaviour.

« Use the MouseButton_Up event rather than MouseButton_Down to trigger a button
click. If users click a wrong button, a tolerant interface allows them to slide the mouse
pointer off the button and safely let it go, while an intolerant interface would trigger the
mouse event immediately, permitting no escape after the click.

- Warn users when they are about to do something dangerous or costly, such as deleting an
account.

« Compensate for users’ poor choices, such as by backing up data before deleting it - the
Recycle Bin utility in an OS does this.

- Anticipate common errors and handle them gracefully. For example, Microsoft Word’s
Autocorrect quietly fixes typos like ACcidentally’ caused by holding the SHIFT key down
for too long at the beginning of a word.

9780170364744

Chapter 6 Programming

« Make the default action the least harmful one possible. Default values should be the most
popular and commonly chosen values. Courteous software lets users change default values.

« Make ‘Cancel the default button on a form so that no harm is done if the user carelessly
hits ENTER.

- Provide users with choice. People use computers and software in different ways, and good

software lets them choose how they do things, such as printing a document from the

menu bar, from shortcut keys on their keyboard (such as CTRL+P in Windows), or from a
button on a quick-access toolbar.

Close Tile

. @ﬂn: Don't Save :

The current, untitled file has been modified.
Do you want to save the file before closing it?
If you do net save it, all modifications since the last save will be abandoned.

FIGURE 6.17 The default button

Consistency

An interface should look and behave consistently from start to finish. Consistency should be
applied in as many aspects as realistically possible. Refer to the GIMP interface shown in Figure

6.18 for an example of consistency. This includes:

+ icons
+ body text and heading styles
- text and background colours
« margins, borders, headers and footers

+ navigation and menus.

)

File Edit Select View

Tools are
grouped in
the top left
corner

cPNNEPT,

A LDBEPR O
CRmBY>e

L

-

| [¥8] Toot Options
| Birbrush
| Made: | Normal |

—
[g |Bruzh . _<— Tool options
I .,.'.;'_Hamnessoso @

FIGURE 6.18 GIMP interface

lmage.l Layer Colors Tools

239

In Figure 6.17, by default,

.ﬁ.gﬁnmi Clnse .

simply hitting enter triggers
the ‘Yes: Save’ button rather
than closing the file and
losing data. The default
button can be identified by
its thicker border line.

Menu items are

Filters Windows Help <&

® Duplicate
Mode

Ctrl+D
3

! Transform

¥ Flip Horizontally

'+ Canvas Size...
Fit Canvas to Layers
Fit Canvas to Selection
@Q Print Size...

. Scale Image...

4w Crop to Selection
Autocrop Image
Zealous Crop
Merge Visible Layers...
Flatten Image
Align Visible Layers...
Guides

| Configure Grid...

Image Properties

grouped in a
horizontal row
across the top

Flip Vertically

Rotate 90° clockwise

Rotate 90° counter-clockwise

e ¢ o P

Rotate 180°

Guillotine

Ctrl+M

Alt+Return

are gathered
in one handy
location

Image transform
operations are
grouped in a
single menu
item

240 Computing VCE Units 1 & 2 9780170364744

THINK ABOUT &.
COMPUTING 6.14

Python is a widely used
scripting language, and
well worth learning. You
can download a Python
interpreter and
investigate it.

Fundamental programming concepts

Despite the differences between platforms and languages, many concepts are universal to
all programming environments.

Compiled and interpreted languages

Many programming languages, such as the C family, are compiled, meaning that source code is
converted once by a compiler into executable code, such as an EXE file in Windows, to be run
many times under a particular OS.

Scripting and interpreted languages, such as Python, PHP, Perl and JavaScript use a different
approach. The source code is compiled every time it is run, instead of being compiled once
by a compiler into a stand-alone executable program. This process is slower than once-off
compiling, but:

« programs can be easily, swiftly and repeatedly modified by the programmer or end user
without a compiler

« the code is human-readable and no viruses can be hidden in the source code

« source code only needs to be written once for all computers on all platforms that have the
interpreter to run it; this is important for server-side internet programming.

All OSs, and some applications, support scripted batch files to automate tasks. Windows
Powershell, Applescript, and Unix shell scripts are such scripting languages. They make complex
or often-repeated tasks simple, especially for unskilled users.

@echo off

echo Moving torrent files from c:\down and p:\torrents to Revo (Y:)
if exist c:\down*.torrent copy c:\down*.torrent yv:\down
if exist p:\torrents*.torrent copy p:\torrents*.torrent y:\down
timeout 4

echo.

echo Done

FIGURE 6.19 A Microsoft DOS batch file

Modular programming

Modular programming involves breaking programs into small sections of code. Large programs

are typically created as a collection of small, self-contained code modules (also known as

subroutines or subprograms) for these reasons.

1 Itis easier to find a bugin a small module than in a massive chunk of code.

2 Software development is faster when several programmers can work simultaneously on

different modules.

A useful module can be re-used in other programs. This saves time and effort.

4 A program often needs to carry out the same action in different places. Rather than
repeating the code, it appears once and is called upon multiple times.

w

9780170364744 Chapter 6 Programming

MAIN PROGRAM SUBPROGRAM

a € 3 Procedure findmin (numl, num2)
b € 4 / IF numl < num2 THEN

CALL findmin (a, b) min € numl

c € 5 ELSE

d € 6 min € num?2

CALL findmin d) END IF

e & 7 DISPLAY “The smaller value is “, min
f & 38 End Procedure

CALL findmin (e, f£f)

END

FIGURE 6.20 A main program calls a subprogram

There are a few notable features in Figure 6.20.

+ The same code is needed in three places in the main program (left). Each time, the main
program calls subprogram FindMin.

» For each call, the main program passes the subprogram two values it needs to calculate
with. Values passed to a subprogram are called parameters.

. 'The values sent to the subprogram are copied to variables (numl, num?2) that are local
to the subprogram; that is, the main program cannot see or change them. In this way,
a subprogram can use variables without worrying about variable names in the main
program or other subprograms. Global variables are visible to — and changeable by - the
main program and other subprograms. For safety, avoid using global variables unless
absolutely necessary.

« When the subprogram finishes, it passes control back to the main program. Execution
continues with the statement following the one that called the subprogram.

Functions
Functions are procedures that calculate and return a value. Function calls usually have
parentheses after them, to contain parameters; for example:

answer xX'® SQRT (num)

Here, the SQRT function calculates the square root of parameter num and returns the
answer to the main program where it is assigned to answer. Commonly used functions like
SQRT come with the compiler for programmers to use. Typical function libraries include:

- mathematical: absolute, ceiling, cosine

« string: get left/right/middle characters, convert to lowercase, find substrings

- conversion: convert to Boolean/integer/string, convert string to number

- miscellaneous: time and date, logical (e.g. 1sDigit, isUppercase), random number.
Functions are often nested; for example:

PrintName X'® Upper (Left (Firstname,1)) & “.” &
Upper (Left (FamilyName,1l)) & Lower (Right (FamilyName,Length
(FamilyName)-1))

Data validation

Validation checks that input data are reasonable. Validation does not and cannot check that
inputs are accurate.

A range check checks that data are within acceptable limits or come from a range of
acceptable values. For example, students enrolling in kindergarten must be between the ages of

241

242 Computing VCE Units 1 & 2

THINK ABOUT &.
COMPUTING 6.15

Visit a few websites that
have data-entry forms.
What validation rules
are used on the data, and
why? Are any of them
unreasonable (e.g. insisting
on a 5-digit zip code)?

The contents of internal
documentation may be
dictated by a programming
team’s or organisation’s
style guide. It promotes
consistency in a team’s
work, making it easier for
programmers to collaborate
and work with the code

of others.

THINK ABOUT y.
COMPUTING 6.16

Search online for ‘google
style guide . Why do you
think those rules were
made?

9780170364744

3 and 6 years (acceptable limits). As another example, the product size must be small, medium
or large (acceptable values).

A type check is a useful way of confirming that the values entered into fields are of the
expected type. It will confirm if values are entered in the wrong fields, such as if numbers are
entered into fields that expect only text values.

An existence check checks whether a value has been entered at all.

Internal documentation

Internal documentation explains the functioning and purpose of source code to programmers
to make code more meaningful.
Useful comments add information that is not already obvious in the code:

// IntTemp - temperature is in Celsius

IntTemp X'® 0
It should not be trivial or contain obvious information, like this:

// Set temperature to zero

IntTemp X'® 0

What to include in internal documentation
« The purpose of a module
« The author’s name
« Date of last modification
«Version number, to keep track of the latest version of the code
« Information, if any, about further work that is needed
« Problems that still need to be fixed
- Assumptions; for example, the customer file already exists
« Constraints; for example, it must work on a screen of only 300 x 500 pixels
- External code libraries or resources required by the module.
Adding internal documentation takes extra time and effort, but it is easier than studying
obscure code.
There are no rules regarding how comments should be marked in pseudocode. You could

use any of the following:
/* comment */
// comment
" comment
comment

Note: Programmers are encouraged to write internal documentation, but for the purposes
of this Area of Study, internal documentation is 7ot required.

Loops

Much of the power of software comes from the ability to automate repetitive actions. Using a
loop - doing something 100000 times - is just as easy as doing it twice.

If the number of required repetitions is not known in advance, use an uncounted loop;
for example, when the number of accounts to process in a database might change every few
minutes. It keeps testing whether it should continue looping.

If the number of required loops is known, use a counted loop; for example, the number of
accounts has already been counted.

9780170364744 Chapter 6 Programming 243

Counted loops
The classic counted loop is FOR/NEXT, which uses a variable as a counter (the index) to keep
track of its progress as it loops from its starting point to its ending point.

This C code uses x as its index while looping from values 0 to 9 as it repeats the code within
the curly { } braces to produce the output:

0 1 2 3 4 5 6 7 8 9

for ((x = 0; x < 10; x++) {
printf (“&d\n”, x);
}

If you break down the typically concise C syntax, you can see the following.
« x = Oinitialises the counter to value zero.
« x < 10 looping continues while the value of x is less than 10.
« x++ increments x after each iteration (loop).
Inside the {loop}:
« printf isafunction to display a formatted value.
+ %d\n formats the output as a decimal followed by a new line.
« The semicolon tells the C compiler that the statement is finished.
This example in Basic is more typical of a real program because it uses variables rather than
constants for the loop’s limits.

FOR x = StartingValue TO EndingValue
PRINT x

NEXT x

Uncounted loops
Uncounted loops keep cycling while a logical test is true; for example, while the temperature is
less than 54 degrees Celsius, or until we reach the last record in the file.

Top-driven (test at top) loops carry out their continuation test before the loop begins. In
contrast, bottom-driven (test at bottom) loops carry out their instructions at least once and
then test to see if they should loop again.

TABLE 6.6 Uncounted loops

Top-driven loop Bottom-driven loop
(Test at top) (Test at bottom)
READ strName READ strName
Found X'® FALSE Found X'® FALSE
Pointer xX'@ 1 Pointer xX'@ 1
WHILE NOT Found DO
IF lstNames[Pointer] = strName THEN IF lstNames|[Pointer] = strName THEN
Found X'® TRUE Found X'® TRUE
END IF END IF
END WHILE LOOP WHILE NOT Found

Table 6.6 shows a number of classical programming features.

The spaces at the start of some lines are called code indentation. Code indentation makes it
easier to see where loops and tests begin and end. You are expected to use indentation in your
pseudocode.

244 Computing VCE Units 1 & 2 9780170364744

Don’t mix up ‘<’ and *>". It's

embarrassing, and causes
serious logical errors!

TABLE 6.7 Logical

operators

Symbol ‘ Meaning

<

<>

is equal to

is less
than

is greater
than

is less
than or
equal to

is greater
than or
equal to

is not
equal to

Note also the initialisation of the Found and Pointer variables. Some compilers
automatically initialise variables, but not all. Give variables explicit starting values, just to be
sure. Close files explicitly and free up reserved memory before ending programs.

The IF/THEN/END/ IF control structure is a classic example of programming logic.

Logic

Digital logic is used to control a program’s behaviour under different conditions. For example:

IF B > 0 THEN
B X® B + 1
END IF

The logical test (IF B > 0) must result in a true or false (Boolean) answer. If true, the code
following THEN is executed (B X*'® B + 1).Iffalse, execution skips to the line after END IF.
The other logical comparisons in pseudocode are shown in Table 6.7.
Some logical decisions are more complicated than a single test.
Other logical operators can be used to allow powerful, intelligent decision making. Here are
some examples.
« AND adds another condition that must also be true for the result of the test to be true.
IF (ID length=5) AND (first character is alphabetical) thelID isvalid.
Both conditions need to be true, otherwise the whole IF statement becomes false.
- ORadds a condition that, if true, would make the whole test true.
If (destination is far away) OR (time is short) then travel by jet.
If any condition is true, the test result is true.
« ELSE describes what happens when the result of the IF test is false.
- Parentheses can be used to group tests into related logical bundles.
Take the example, An ID is valid if it is five characters long and starts with a letter, or it is
seven characters long and starts with a digit’. The pseudocode for this might be as follows.

IF
((ID length=5) AND (first character is alphabetical))
OR
((ID length=7) AND (first character is a digit))
THEN
ID is valid
ELSE
Display a warning.
END IF

« CASE is a handy structure used by many languages when there are many possible
conditions, each with its own appropriate action.

Debugging
The best-laid plans of programmers can go astray in three main ways:
1 syntax errors

2 logical errors
3 runtime errors.

9780170364744

Syntax errors

Compilers expect precise instructions in a strict format with no ambiguity. If any source code
cannot be understood by the compiler because the syntax does not match what the compiler
expects, it will stop working until the code is fixed.

Such syntax errors are caused by incorrect punctuation, spelling and grammar. Incorrect
punctuation may result from simple mistakes, such as using a square bracket instead of a
parenthesis.

Incorrect spelling in a syntax error is not the same as incorrect spelling in regular
communication. A compiler has a small dictionary of key words that it recognises. If a source
code instruction is not in the dictionary, even if it is a real word, the compiler will return an
error message. While a person may know that the word ‘colour” has the same meaning as ‘color’,
a compiler does not, so it returns an error until ‘color’ is used and ‘colour’ removed.

Commands in source code must follow a precise format to avoid incorrect grammar errors.
For example, a language might expect the following syntax:

INPUT “prompt”; variablename
If the source code said the following instead:
INPUT variablename; “prompt”
the compiler would not understand the source code any more than you would understand a
person who greeted you by saying, Like I hat your, hello!
Thankfully, syntax errors are easily found by compilers, and easily fixed by programmers. In

fact, many modern source code editors pop up helpful syntax tips when they detect the use of

a key word, as shown in Figure 6.21.

LUGARY el Forml.vb [Design]® « Solution Explorer

-] 7 Load [EEE

{7 WindowsApplication1
{=d| My Project
5] Form1wb

| Ed {Form1 Events)

BPublic Class Forml

- [db] «

E Private Sub Forml_Load(ByVal sender As System.
A3=mid(b

End Sub A 1of 2 w Mid(str As String, Start As Integer) As String

[End Class ; e i ;
B Returns a string containing a specified number of characters from a string.

str: Required. String expression from which characters are returned,

FIGURE 6.21 Visual Basic editor pops up help when you type a command

Logical errors

Logical errors occur when a programmer uses a wrong strategy. To the compiler, nothing is wrong
with the syntax. The problem is that the instructions are just plain wrong. For example, to add
10 per cent tax to a price, the following statement would give an answer, but it would be wrong,

TotalCost = Price + 10%

A Price of 30 would yield a TotalCost of 30.10 instead of 33.00. What went wrong? The
algorithm.

To calculate a price plus tax, the correct algorithm is:

1 Calculate 10 per cent of the Price.

Add that amount to the Price and store it as TotalCost.

The faulty algorithm simply added 10 per cent (0.10) to the price. It should have been:

TotalCost = Price + (10% of Price)

Logical errors are the hardest to fix because the compiler cannot detect faulty logic any more
than a car knows when you are driving in the wrong direction. The only way to find logical errors
is to create test data and manually calculate the correct answers for that data. Compare the
algorithm’s answers with the expected answers. If they do not match, fix your algorithm.

Chapter 6 Programming 245

It is important to be

aware of the potential

for introducing incorrect
spelling syntax errors
because compilers use
American English and
Australian students write in
Australian English.

Testing is discussed on
page 248.

THINK ABOUT 7.
COMPUTING 6.17

Write an algorithm to
convert a fraction like % toa
percentage.

246 Computing VCE Units 1 & 2

This may help you

remember the errors:

1 Syntax error: Trying to
board a bus through the
exhaust pipe.

2 Logical error: Getting
onto the wrong bus.

3 Runtime error: The bus
breaking down.

Remember that a logical
error is a fault in the
program’s logic and will not
be detected by a compiler
or debugger.

When they first see
statements like Pointer
= Pointer + 1,
Some young programmers
exclaim, ‘How can something
equal itself plus one?’

In most languages, ‘=’
indicates assignment,

and means ‘Evaluate
Pointer + 1and
store the result back into
Pointer.” Unfortunately,
most languages also use ‘=’
for logical comparisons like
IF X=1 THEN X=0
The first '=" means ‘is equal
to’. The second means ‘is
assigned the value’.

This is why, to avoid
confusion, VCE pseudocode
indicates assignment

with ‘X' @’

IF X=1 THEN X

X'® 0

THINK ABOUT 7.
COMPUTING 6.18

List each loop structure
supported by your chosen
language, and categorise
its type.

9780170364744

Runtime errors

Runtime errors are caused by factors during the execution of a program, such as:

« the computer running out of memory

 hard disk errors

+ operating system failure

« aproblem with network connectivity

- incompatibility with another program running on the computer, such as antivirus software
. incorrect or outdated device drivers.

An OS may detect and handle unexpected system states to protect a program from crashing,
but you should try to anticipate possible runtime problems and make allowances for them; for
example, by making your code check for free space before saving data to disk.

The loop pseudocode (Table 6.6) introduces a common but unwelcome programming
feature: a logical error. See if you can identify it before reading on.

The problem is that the program’ loop uses the Pointer variable to count its progress
through the array 1stNames, but Pointer never changes and Found will never become
True so the looping will never end. Such an endless loop will force the user to shut down the
program to regain control of the computer.

To fix the logic, Pointer needs to be incremented (increased by one) with Pointer x'®
Pointer + 1.Butwhereshould the statement go?

Let’s put the increment statement here:

Pointer X'@® 1
WHILE NOT Found
IF lstNames[Pointer] = strName THEN
Found X'® TRUE
Pointer X'® Pointer + 1
END IF
END WHILE

Is the code now debugged? We can find out by doing a desk check.

Desk checking

Desk checking is a technique used to check the logic of an algorithm manually. Essentially, the
programmer imitates a compiler and manually tests pseudocode logic by stepping through the
lines of code to check that the values are as they should be at each point. Throughout the check,
you must adhere to specified logic. In the table below, assume that the name being searched for
is ‘Ted and the 1stNames array contains the following test data.

Array index ‘ Value
1 Bob
2 Carol
3 Ted
4 Alice

Use your brain as a compiler to step through the code using our test data to calculate actual
values. Beside the lines of code, draw a table where you record the values of variables.

9780170364744 Chapter 6 Programming 247
The first desk check in Table 6.8 uncovers a new problem: When the IF test fails, execution
skips to the END IF line, which bypasses the new increment statement, and causes that endless
loop again! In the second desk check, we can move the increment statement again.
TABLE 6.8 First desk check
Code Loop 1
READ strName Strname = Ted’
Found xX'® FALSE Found = False
Pointer X'® 1 Fointer = 1
WHILE NOT Found Found = False, so test is True,
50 enter loop.
IF lstNames[Pointer] = Fointer ="1.
SEREIE LAk IstNames[1] = Bob'.
‘Bob’ <> Ted so skip to END IF
Found xX'® TRUE Skip
Pointer X'® Pointer + 1 Skip
END IF What? Hang on! That's NOT
RIGHT.
END WHILE
TABLE 6.9 Second desk check
Code Loop 1 Loop 2 Loop 3 Loop 4
READ strName Strname="Ted
Found X'® FALSE Found = False
Pointer X'® 1 Fointer = 1
WHILE NOT Found Found = False, Found=False so | Found still Found = TRUE!
s0 enter loop. loop again =False, so loop Skip to line after
again END WHILE
IF lstNames[Pointer] Fointer="1. Fointer=2. Pointer=3. skip
= strName THEN IstNames[1]= | IstNames[2]= | IstNames[3] =
‘Bob'. ‘Carol. Ted'.
‘Bob' <>'Ted' so | ‘Carol' <> Ted so | Ted =Ted so
skip to END IF skip to END IF drop to next line
Found xX'® TRUE Skip Skip Found x*® True! | skip
(Found=False) (Found=False)
END IF skip
Pointer X'® Pointer Fointer=2. Fointer=3 Fointer = 4 skip
+ 1
END WHILE Backtothetop | Doit again Back to theloop | skip
test again

Computing VCE Units 1 & 2 9780170364744
248 puting

THINK ABOUT ?.
COMPUTING 6.19

Use the leap year
pseudocode from earlier to
desk check the years 1400,
1700 and 2100.

Never trust a program’s
output. It may look perfectly
authoritative but still be
100% wrong.

We expected the pseudocode to find “Ted’ in slot 3 of 1stNames. The second desk check
verified it.

Good test data caters for all possible circumstances, so you should also test that the code
works when the name being sought is 7ot in the array; for example, s trName is Humphrey’.

Process testing

You must always test the software you have developed, whether the program is a game, a
shopping cart for a website, or an aeroplanes autopilot navigation system. If the game you
have developed fails, it may simply annoy the users. If the shopping cart fails, it could prevent
purchases or overcharge customers. However, if the software in an aeroplane’s autopilot system
fails, people could die.

In addition to all of this, buggy, poorly tested code can ruin a freelance programmer’s
reputation and make it difficult to find future work.

Several forms of testing can be conducted.

Alpha testing, which is sometimes called informal testing, is when programmers test their
own code during software development.

Beta testing is usually the first time that software is tested by future ‘end users” and specially
chosen reviewers, using live data that is more random in nature. It usually happens once the
program has been completed and the goal is to weed out useability problems - you are actually
trying to crash the software.

Validation testing verifies that the code properly validates input data. For example:

IF (Sex <> “M”) AND (Sex <> “F”) THEN
DISPLAY “Invalid Gender!”
END IF

In component testing, individual modules within the software are tested in isolation. In
contrast, integration testing is used to test whether modules work together; that is, that they
can exchange parameters properly. System testing checks that the program works as a whole.

Finally, in the formal testing phase, the client who is paying for the software is shown how
the finished program meets all of the functional and non-functional requirements specified
during analysis.

Test data

To prove the accuracy of a program’s output, you need to feed the program sample data to

work on, and compare the program’s answer with one you know is guaranteed to be correct.

Choosing this test data is not as easy as it sounds.
Good test data should include the following.

« Valid data, which is data that is perfectly acceptable, reasonable and fit to be processed

« Valid but unusual data, which is data that should not be rejected even though it seems
odd; for example, a gifted 12-year-old child may enrol in university so that age number
should not necessarily be processed as an error

« Invalid data, to test the code’s validation routines; for example, if people must be 18 years
of age to be granted a credit card, the test data should include people under 18 so they can
be rejected

« Boundary condition data, which are on the borderline of some critical value where the
behaviour of the code should change; such ‘tipping point” errors are a frequent cause of
logical errors in programming

9780170364744 Chapter 6 Programming 249

Testing tables
Part of software design is to write a checklist of all the input, processing and output the software
should be able to do, based on the design specifications. This list is used throughout the
development of the application to check and test that the application meets those specifications.
This list is called a testing table.

As an example, an online club allows members aged between 6 and 16. The validation
pseudocode says:

IF age > 6 AND age < 16 THEN accept member

Is there a problem with this logic? You can use a testing table to use the test data to calculate
a result manually and compare it with the output of the pseudocode. It is a good way to show
evidence of testing in your Outcome.

In this case, good test data would be 5, 6, 7, 15, 16 and 17, because they cover every possible
type of input: below the lower limit, on the lower limit, within the limits, on the upper limit, and
above it. The test data set is as small as it can be.

TABLE 6.10 Testing table 1

Testing table

Data Expected result Actual result Fix
5 Don't accept Don't accept

6 Accept Don’t accept

7 Accept Accept

15 Accept Accept

16 Accept Don’t accept

17 Don't accept Don’t accept

The pseudocode behaves accurately most of the time, but on occasion it fails spectacularly.
Why? It only accepts members who are over 6 and less than 16 and rejects applicants who are
exactly 6 or 16.

Once these logical failures have been highlighted, the cause of the errors need to be found. The
rule effectively says ‘between 6 and 16" not older than 6 and younger than 16’. The logical operators
> and < are wrong. Now we need to devise a fix and fill in the last column of the testing table.

TABLE 6.11 Complete testing table

Testing table

Data Expected result Actual result Fix

5 Don't accept Don’t accept ®

6 Accept Don't accept Change Age>6 to Age >=6
7 Accept Accept ®

15 Accept Accept &

16 Accept Don’t accept Change Age<16 to Age

<:16
17 Don't accept Don’t accept ®

Using the completed testing table in Table 6.11 as a guide, the pseudocode can be corrected

as follows.

IF age >= 6 AND age <= 16 THEN accept member

Handy tip: Often when you
are asked to identify a
bug in code, the problem
is a result of boundary
condition errors.

250 Computing VCE Units 1 & 2 9780170364744

Elegant code is effective,
short and clever (also
known as ‘a neat hack’).
Especially good algorithms
are sometimes described as
‘beautiful’, and are more art
than science.

Using nMonths avoids
repeating ‘12" throughout
the code. The code is easier
to maintain when key values
can be changed in a single
location.

Arrays

A variable can only hold a single value, which is a major limitation when processing a large
amount of data. Adding up annual rainfall using variables looks like this:

GET RainO1

GET Rain02

GET Rain03

GET Rain04

GET Rain05

GET Rain06

GET Rain07

GET Rain08

GET Rain09

GET RainlO

GET Rainll

GET Rainl2

TotalRain = Rain0l + Rain02 + Rain03 + Rain03 + Rain04 + Rain05 +
Rain06 + Rain07 + Rain08 + Rain09 + RainlO0 + Rainll + Rainl2

Imagine the pain involved if there were 1000 rainfall figures. The solution is to use an array: a
storage structure with multiple, numbered storage slots. Arrays used with loops are a powerful
programming tool.

Using loops and arrays, the rainfall calculation could become far more elegant:

nMonths xX'@® 12

DECLARE ARRAY Rain[nMonths]

FOR monthnum = 1 to nMonths
GET Rain[monthnum]

TotalRain X'® TotalRain + Rain[monthnum]

NEXT monthnum

LAY e Form1.vb [Design] + Solution Explorer

| # (Form1 Events) 'l 7 load = | L] |
EPublic €lass Forml 1= {22l WindowsApplication1
[=8 My Project
[= Private Sub Forml_Load(ByVal sender As System.0 [Z] Formlwvb

{End Class b IndexQutOfRangeException was unhandled ®

Index was outside the bounds of the array.

Troubleshooting tips:
‘Make sure that the maximum index on a list is less than the list size, § A

Make sure the index is not a negative number,
Make sure data colurmn narmes are correct,

Get general help for this exception. v

Search for rmore Help Online...

Actions:
View Detail...

Copy exception detail to the clipboard

FIGURE 6.22 An attempt is made to refer to slot 7 of a 6-slot array

9780170364744

To cover 1000 months instead of just 12, simply change ‘12" to 1000’ in the first line. It is that easy.

To create (or declare) an array, a programmer must usually specify the data type it will hold
and the number of slots (or elements) it has. Referring to indexes outside of the defined limits
will cause a runtime error.

The Rainarrayisaone-dimensional (1D) array because it is a single column of data, similar
toalist. To store data in a table with rows and columnslike a spreadsheet, use a two-dimensional
(2D) array.

If the rainfall data needed to be stored for 100 years, you would create the array
Rain[100, 12] with 100 rows, each with 12 columns - 1200 slots all together.

As a table, the rainfall data may look similar to Table 6.12.

TABLE 6.12 A 2D array seen as a table

Array table

Month 1 Month2 | Month3 Month4 Month5 | Month6 | Etc. Month 12
Jan Feb Mar Apr May Jun Dec
Year 1 67 34 67 45 34 45 67
Year 2 56 45 75 41 75 32 61
Year 3 41 63 82 46 56 31 86
Year 4 59 51 74 31 56 78 78
Year 100 | 45 34 67 50 56 45 89

Having two dimensions requires two loops: one to loop through the 100 rows and one to
loop through each row’s 12 columns:

nMonths xX'@® 12
nYears X'® 100
DECLARE ARRAY Rain[nYears , nMonths]
// remember that years are the FIRST dimension, Months are the SECOND.
FOR yearnum = 1 to nYears
FOR monthnum = 1 to nMonths
GET Rain[yearnum , monthnum]
TotalRain X'® TotalRain + Rain[yearnum , monthnum]
NEXT monthnum

NEXT yearnum

For each repeat of the outer year loop, the nested month loop carries out its full 12 cycles -
like the hours and minutes on a digital clock. When the inner loop has run its 12 cycles, the
outer loop increments its counter and the inner loop runs its full course again.

So the data is processed in the order shown in Table 6.13.

TABLE 6.13 How nested loops work

Year Month Comment

1 1 Inner and outer loops begin with their starting values

1 2 Outer loop’s counter is constant until inner loop finishes its full count
1 3 Monthnum =3

1 4

Cont.

Chapter 6 Programming 251

Some languages use
[square brackets] to enclose
array index numbers.
Others use (parentheses).

In pseudocode you can use
either, but be consistent.

Arrays are much like tables.
With tables, it often does
not matter if you create it
like this

A | B
1
2
3
or like this.
1 2 3
A
B

Arrays are similar. We could
have created the array as
Rain[12,100].

252 Computing VCE Units 1 & 2

Important — an inner
loop must be completely
enclosed within the
outer loop!

THINK ABOUT y.
COMPUTING 6.20

Can you suggest a case
when a 4-dimensional array
would be needed?

Stacks and queues are
required knowledge for
Software Development VCE
Units 3 & 4.

Sequential files are often
used to store logs —
ongoing histories of events.
New events are easily
appended (added to the
end of) sequential files.
0Ss continuously maintain
many logs.

9780170364744

Year Month Comment

1 Etc.

1 12 Inner loop finishes. Outer loop ticks over.
1 Inner loop starts its next full cycle.
2 Yearnum = 2. Monthnum = 2.

Etc. Etc.

100 10

100 11

100 12 Inner loop finishes. Outer loop finishes.

What if each of these rainfall figures for 12 months over 100 years were recorded in
five different locations? Use a 3D array, Rain [5,100, 12], and three nested loops.

Stacks

A stack is a simple, basic method of temporarily storing data, with the PUSH command, and
releasing it as needed, with the POP command. Like a stack of pancakes or parked shopping
trolleys, the most recently added item is always the first to be removed, so stacks are referred to
as first-in last-out (FILO) or last-in first-out (LIFO) structures.

Queues

Queues are often used when some code or a device such as a printer cannot keep up with
incoming data or commands. Instead of discarding the code or device, they are stored in a
queue in the order in which they arrived. When the processor or device becomes available,
queued jobs are processed in turn. A queue is a first-in first-out (FIFO) stack.

Files and records

Primary storage, or RAM, holds data during a program’s execution. Between runtimes, data
and instructions are stored in files on non-volatile secondary storage, such as hard disk drives.
The main file types you should become familiar with are sequential and random.

Sequential files
Sequential (or serial) files are plain text documents that contain human-readable text data.
Sequential files are easy to create but can be slow to search through because data items can be
of any length. This means that the location of a particular data record may not be easily found.
A record is a complete set of data fields relating to a single item, person, transaction or
event. An employee’s record may include fields containing her given name, family name, date
of birth, ID, department and so on. The concept of records and fields is also used in database
theory, so it is worth remembering.
A common type of sequential file is called CSV, which stands for comma-separated values.
In a CSV file, each line is a record, composed of comma-separated fields:

Susan , Wasib , 1990/12/31 , WAS0001, Accounting
Spiro, Papadopolous, 1966/02/13, PAP0023, Management
Alphonse, Capone, 1924/11/01, CAP0003, Security

9780170364744 Chapter 6 Programming 253

TABLE 6.14 A random file

Employee record

Random files
Random files are made up of records of identical length, with fields that must be rigidly defined

in advance. Table 6.14 shows an example of a random file for an employee record. Field Length
Every record is the same length, so the location of any record in the file can be calculated (in bytes)
precisely with: FirstName 15

StartingPoint X'® (RecordLength * (RecordNumber - 1)) + 1

For example, the length of an employee record is 52 bytes. The starting point of record 3 in
that random file would be (52 x 2) + 1 = 105. Using this calculation, the program can instantly
seek position 105 in the file and load record 3.

Thus, any record can be accessed instantly without having to step through every record
from the start of the file, as with sequential files.

Therefore, the benefit of random files is fast access. However, there are also some drawbacks
to consider.

Data that is longer than the reserved file size is simply truncated (chopped off) and lost.
‘Marybelle-ChristieAnne would forever be known in the employee file records as ‘Marybelle-Chris’.

A field value that is shorter than the allotted length still uses the allotted space. Thus,
employee ‘Su’ would have 13 wasted bytes in her FirstName field on disk. With millions of
records like these, a great deal of disk space can be wasted.

Try to imagine random files as books where every individual paragraph is allotted one exact
full page of space. If you want to find paragraph 99 it is very easy: go to page 99. If paragraph
99 should be longer than a single page, the extra information is truncated and lost forever. If
paragraph 99 is very short, most of the page is wasted.

Locating paragraph 99 in a normal book is much more like locating a sequential file. You
must start at page 1 and count through 99 paragraphs. It takes more time but no information
has been lost or space wasted.

Choosing between random and sequential files is not always easy, and it depends how much
data there is, and how important it is to be able to access data quickly.

GUI controls and structures

Most high-level languages have graphical user interfaces to make programs more intuitive
for users.

These languages provide pre-packaged classes of objects for programmers to use, such as
list boxes, menus, radio buttons and text boxes. With the GUI responsible for managing these
objects, the programmer’s work is made much quicker and easier.

Programmers can use GUI objects to avoid mastering arrays, variables, stacks and other
programming basics, but this is short-sighted, because their programs will be tend to be fat
and slow.

GUI structures are designed for ease of use, not raw power or optimal speed, and they
consume far more memory and processor time than arrays, stacks and variables. The
programmer also has little fine control over them, and essentially they are like cheap automatic
cameras that are capable of producing acceptable, but rarely exceptional, photographs.

As a programmer, you must learn basic concepts, practise your skills, and master your tools
to become successful.

When RAM was rare and very expensive, software had to be very basic, so it was difficult
to use and difficult to create. Complex commands had to be memorised and usually typed.
Software did not have the resources (RAM and hard-disk space) for all of the user-friendly
features taken for granted now, such as easy menus, dropdown lists, cut and paste, undo, icons,
dialogue boxes and scrollbars.

FamilyName 25
DateOfBirth |3
D 7

SickDays 2

Pointer

Button
CheckBox
CheckedListBox
ComboBox
DateTimePicker
Label

LinkLabel
ListBox

ListView
MaskedTextBox
MonthCalendar
Motifylcon

MurmnericUpDown

R
A
A

A 755

B

L

Bl B

PictureBox
ProgressBar
RadioButton
RichTextBox
TextBox
ToolTip

TreeView

g:FESB

WebBrowser

4 Containers

Pointer
FlowLayoutPanel
GroupBox

Panel
SplitContainer
TabControl

TablelayoutPanel
4 Menus & Toolbars

R Pointer

&l ContextMenuStrip

B MenuStrip

L StatusStrip

B ToolStrip

T.0 ToolStripContainer
4 Data

Rk Pointer

il Chart

€3 BindingNavigator

£31 BindingSource

FIGURE 6.23 Visual
Basic GUI Objects

254

Computing

VCE Units 1 & 2 9780170364744

o1 Administrator: CA\Windows\System32\cmd.exe

SHINDOMS Sz ystem32xdir ~7
Displays a list of files and subdirectories in a directory.

DIR [drive:llpathllfilenamel [/ALL:lattributes1] [~B]1 [~C1 [-D]1 [/L1 [~/N]
[-0LL:1sortorder]] L[-F1 L[-Q1 L[-R]1 L[~81 L[-TLL:1timefieldl] [-W]1 [-%1 [-41]

[drive: l[pathl[filename]
Specifies drive, directory, andsor files to list.

~A Displays files with specified attributes.
attributes D Directories R Read-only files
H Hidden files A Files ready for archiving
% System files I Hot content indexed files
L Reparse Points — Prefix meaning not
Uses bare format ¢(no heading information or summary).
Display the thousand separator in file sizes. This is the
default. Use »—C to disable display of separator.
Same as wide but files are list sorted by column.
Usez lowercase.
Mew long list format where filenames are on the far right.
List by files in sorted order.
N By name {alphahetic) 8 By size <smallest first>
E By extension <(alphabetic> D By datestime <{oldest firstd
G Group directories first — Prefix to reverse order
Pauzes after each screenful of information.
Display the owner of the file.
Display alternate data streams of the file.
Displays files in specified directory and all subdirectories.
Controls which time field displayed or used for sorting
timefield C Creation
Last Access
W Last Written
U Uzes wide list format.
Prezs any k to continue . . .

FIGURE 6.24 The unfriendly but powerful Windows command-line interface (CLI)

Eventually, researchers developed the concept of a graphical user interface where text
commands could be replaced by intuitive actions such as clicking on icons and dragging
objects around on screen. Credit for this " WIMP’ (Windows, Icons, Menus, Pointer) concept
must go to Xerox PARC researchers from Palo Alto, California, who developed it in 1973. Apple
later popularised WIMP ideas with the Macintosh in 1984. Microsoft and others soon followed.

GUI make software easier for end-users not interested in becoming power users. Power
users are generally experts who have learned various efficient techniques, such as keyboard
shortcuts and command-line text-based instructions.

GUI programming requires an object-oriented language that provides predefined classes
(objects), such as windows, buttons and listboxes, with offer properties and methods, and
which can respond to events.

The programmer writes code that can:

. read properties; for example, current mouse position

. change properties; for example, increase window height

- respond to events, such as a timer or a mouse drag

- cause an object to carry out a method, such as close, or refresh.

Object-oriented programming (OOP) lets programmers hand off a lot of work to the OS,
such as detecting events like mouse clicks, sorting listbox items and scrolling windows. The
programmer creates event handlers, which are procedures to handle events, such as, ‘When
the user clicks this button, take this action ...

This type of programming is considered event-driven because the OS detects and reports
events and the programmer provides responses to them. A drawback of GUI programming
is that it creates programs with large appetites for RAM, disk storage and CPU power. Such
programs may run poorly, or not at all, on mobile devices.

9780170364744

Searching

Finding a single item among billions, like a database of eBay auctions, is the sort of thing
programmers constantly need to do, and need to do efficiently; that is, without wasting time,
money and effort.

A linear search checks every individual item in turn to see if it matches the item for which
you are searching. It can be very slow when there is a lot of data to search, but it is easy to
program.

The faster, more clever search is the binary search, which is preferable when searchinglarge
data sets, especially when speed is important. The drawback is that the data set must be sorted,
and sorting is itself a slow, difficult task.

W& ETHICAL DILEMMA

To help you tackle this dilemma, search online for ‘ACS code professional conduct’ and
look at the ethical requirements, particularly in Section 1, that the Australian Computer
Society expects its members to follow.

Jean, a statistical database programmert, is trying to write a large statistical program
needed by her company. Programmers in this company are encouraged to write about
their work and to publish their algorithms in professional journals. After months of
tedious programming, Jean has found herself stuck on several parts of the program.

Her manager, not recognising the complexity of the problem, wants the job completed
within the next few days. Not knowing how to solve the problems, Jean remembers

that a co-worker had given her source listings from his current work and from an early
version of a commercial software package developed at another company. On studying
these programs, she sees two areas of code that could be directly incorporated into her
own program. She uses segments of code from both her co-worker and the commercial
software, but does not tell anyone or mention it in the documentation. She completes the
project and turns it in a day ahead of time.

Source: a case study from Australian Computer Society: ACS Code of Professional Conduct Case Studies, April 2014.
More case studies: https://www.acs.org.au/__data/assets/pdf_file/0004/30964/ACS_Ethics_Case_Studies_v2.1.pdf
Code of professional conduct:
https://www.acs.org.au/__data/assets/pdf_file/0014/4901/Code-of-Professional-Conduct_v2.1.pdf

Chapter 6 Programming 255

There are many other
types of searches, each
with benefits under certain
circumstances. Entire
treatises, such as The Art
of Computer Programming
by legendary Donald Knuth,
have been written to study
the theory of searching.

THINK ABOUT y.
COMPUTING 6.21

Without reference to
copyright or other laws,
identify the following.

e What is Jean’s ethical
dilemma?

e \What are her options?

e For each of these
options, what are the
likely consequences of
her choosing it?

e How could she get out of
this dilemma?

e What relevant clauses in
the ‘Australian Computer
Society’s Code of
Professional Conduct’
cover this situation?

Ethical dilemmas are
discussed in Chapters 1
and 5.

E
;!
»-

||

Computing VCE Units 1 & 2

ESSENTIAL TERMS

accessibility ease of use by people with disabilities
or special needs

algorithm strategy behind a calculation or
procedure

arrays storage structures with many ‘slots’
(elements) that are addressed by number; arrays
are managed with loops

central processing unit (CPU) the ‘brain’ of a
digital system; the handler of most of a system’s
data manipulation

code modules subroutines or subprograms; a
function is a special type of module because
it sends back (returns) a value; programmers
must keep track of storage structures in multiple
modules, making data dictionaries even more
valuable

communication hardware hardware that transmits
data between computers and networked devices

compiler programs that convert source code into
executable programs

debugger a program that helps to remove
programming errors (bugs)

default action the operation that the software will
carry out when the user does not give more
detailed instructions

default value used if the user does not provide an
alternative value; a word processor may default
to using Arial typeface, 12pt, with single-spacing

editor a specialised word processor for creating
human-readable programming instructions

field a single data item in a record; e.g.
FamilyName

graphics processor unit (GPU) a very fast and
expensive processor specifically designed for
high-speed image processing in graphics cards

initialise to give a starting value to a variable

input devices instruments and peripherals, such
as keyboards, that allow users to give data and
commands to software and the OS

integrated development environment (IDE) a
unified programming tool

interface within software, the place where people
control the program, enter data and receive
output

iteration looping or repeating

linker a program used to load information that

the executable code will need, such as read a
keyboard or calculate square roots

methods actions a GUI object can carry out; e.g.
window.refresh.

9780170364744

mock-up a sketch showing how a screen or
printout will look, which is used to aid in the
design of an interface

modular programming breaking programs into
small sections of code to simplify debugging and
allow the re-use of modules in other programs

object any item that a program can inspect and/or
change, in terms of appearance, behaviour or
data

operating system (OS) software programs that
manage a computer’s hardware and run
programs

output devices instruments and peripherals, such
as printers and monitors, that display information
from a computer in human-readable form

platform a combination of OS and CPU
ports physical connectors (sockets) for cables

primary storage random-access memory (RAM),
which provides storage for data, information and
software during program execution

processing hardware (CPU, GPU) hardware
that runs the operating system, utilities and
applications

properties characteristics such as width, colour,
visibility

prototype a demonstration product that looks
and feels like a finished program, but may be
incomplete or not fully functional

pseudocode code that designs algorithms in a clear,
human-readable, language-independent format

random-access memory (RAM) the primary and
most common form of hardware storage; it can
be accessed randomly, meaning that any byte
of memory is accessible without touching the
preceding bytes

random files records of identical length with fields
that must be rigidly defined in advance

reduced instruction set computing (RISC) CPUs
(like ARM), which have smaller instruction sets
than complex instruction set computing (CISC)
CPUs

queue a ‘First In First Out’ stack, storing incoming
data or jobs to be processed in order

record a complete set of fields relating to an entity,
such as a person

secondary storage (HDD, SSD) permanent storage

sequential file plain text with variable field lengths,
such as CSV; large files are slow to search

source code human-written and human-readable
version of a program

9780170364744

stack a simple, temporary ‘first in last out’ (FILO)
storage structure

storage structures places in memory holding
data that is being used by a program; includes
variables, arrays, textboxes and radio buttons

style guide in software development, a set of
instructions for programmers about how to
design software for the developer’s platforms

IMPORTANT FACTS

1 The three types of software are system (OS),
applications and utilities.

2 Interpreted languages convert source code to
executable code only when a program runs.

3 Information systems are made up of people,

data, processes and equipment (digital systems).

4 Digital systems comprise hardware, software,
networks, protocols and application architecture
patterns.

5 Transmission media such as twisted-pair cables,
fibre-optic cables and WAPs each have their
strengths and weaknesses.

6 The problem-solving methodology (PSM) is used
to guide software development.

e Analysis determines the software’s
requirements, scope and constraints.

e Design devises a method of solving the
problem, including its appearance and
architecture. Tools include pseudocode, IPO
charts, data dictionaries and mock-ups.

e Development is when software and hardware
are created, assembled and tested. Training
and documentation are created.

7 Good naming practices include Hungarian
notation (e.g. intTemp) and CamelCase.

8 A data dictionary lists all storage structure
requirements, including data types and names,
size, validation rules etc.

9 Data types include integer, floating point, string,
character, date/time and Boolean (true/false).

10 IPO charts plan the data and processing needed
to produce output.
11 Data structure diagrams describe the structure

and relationships within complex data structures.

12 Object descriptions completely describe the
properties of objects; e.g. textbox.width.

13 Internal documentation in source code explains
the workings of the code to programmers.

14 Mock-ups show what screens and printouts
should look like, including sizes and positions of
items, colours, alignment and fonts.

Chapter 6 Programming

thin client the belief that it is better to use ‘dumb’
workstations connected to a powerful central
computer that does all the processing work,
rather than use many powerful computers

validation rules rules that check the
reasonableness (not accuracy) of data’s range,
type, and existence

15 Onscreen images are saved with RGB colour
information. Printed images use CMYK.

16 Modules are called subprograms, procedures or
subroutines. Functions are modules that return a
value.

17 Global variables are visible to and changeable
by the main program and all subprograms.

18 Local variables only exist within a single module.

19 Counted loops (FOR/NEXT) repeat a known
number of times.

20 Uncounted loops (DO, WHILE) loop while a
condition is true.

21 Uncounted loops can be top-driven (test at top)
or bottom-driven (test at bottom), depending on
where they test for continuation.

22 Syntax errors occur when a compiler cannot
understand instructions in source code.

23 Logical errors occur when a faulty calculation
strategy produces incorrect output.

24 Runtime errors occur when problems arise
during execution, such as running out of RAM.

25 Desk checking steps through code manually,
acting like a compiler to verify an algorithm
and detect logical errors.

26 Logical operators are < (less than), >
(greater than), <= (less than or equal to),
>= (greater than or equal to) and <> (not
equal to).

27 The operator X*® means assignment in
pseudocode. = is used for logical
comparison (e.g. IF A=3 THEN
B X'® 4)

28 A one-dimensional (1D) array
is like a list with one column. A
two-dimensional array (2D) is like
a table or spreadsheet with rows
and columns. A 3D array is like = —
a stack of 2D arrays. More
dimensions are possible.

AdVHNNNS 431dVHO

O
L
>
U
-
m
A
0p)
C
<
=
>
A
<

Computing VCE Units 1 & 2

29 Data can be saved to secondary storage as
sequential or random files.

30 Random files have fixed-length records that are
quickly accessed.

31 Testing ensures that programs work properly
and generate accurate information.

32 Good test data checks software behaviour under
all possible circumstances.

9780170364744

33 Prove your algorithm and show evidence of
testing by using a testing table.

34 Events include mouse clicks, timers and so on.

35 Object-oriented languages use classes of
pre-defined objects (e.g. listboxes) that
programmers can manipulate.

- ‘
- -

9780170364744 . Chapter 6 Programming 259

TEST YOUR KNOWLEDGE

HARDWARE

1 Describe two differences between primary and secondary storage.

SOFTWARE

2 Explain the difference between system and application software.

THE OS (OPERATING SYSTEM]

3 Summarise the role of an operating system.
4 Describe the roles of people, data, processes and digital systems in creating an information
system.

PROGRAMMING AND SCRIPTING LANGUAGES

5 Programming languages may differ in syntax, but they are all basically alike What does 1
this mean?

Review quiz

SOFTWARE DEVELOPMENT TOOLS

6 How are source code and executable code related?

STORAGE STRUCTURES

7 Name and give examples of five data types.
8 Describe how lossy and lossless compression reduce file sizes.

THE SOFTWARE DEVELOPMENT PROCESS

9 Why is the PSM analysis stage important?
10 Show examples of three different software design tools.
11 What is an algorithm, and how does pseudocode relate to it?
12 Suggest two possible good names for a variable used to hold an integer value describing
mens average shoe size.

CREATING EFFECTIVE USER INTERFACES

13 Describe affordance and tolerance and give examples of each.
14 List five tips for creating an effective user interface.

FUNDAMENTAL PROGRAMMING CONCEPTS

15 List examples of syntax, logical and runtime errors.
16 How do compiled and interpreted languages differ?
17 Justify the use of internal documentation.

18 ‘Arrays and loops were built for each other! Explain.
19 When is desk checking used?

20 Why is it important to use test data that focuses on boundary conditions?
21 When would you recommend the use of a random file?

e puting VCE Units 1 &

1

Ad

lower than the secret number.

Tasks

Write pseudocode to describe the
processing strategies involved in
developing the program.

Create an IPO chart to describe the
data and information requirements.
Design the program’s interface with a
mock-up.

Create test data to fully exercise the
validation and the algorithms.

Use your test data to desk check the
pseudocode.

9780170364744

APPLY YOUR KNOWLEDGE

GUESSING GAME

You will design and develop a program that will play a game with a human. The human thinks
of an integer between 1 and 100. Your program will use the most efficient strategy possible to
guess the number. For each guess, the human must confirm if the guess was correct, higher or

Develop the solution, using good object
naming and creating useful internal
documentation along the way.

Test the solution with your test data.
Fix all bugs.

Get a classmate to play your game

and give you written feedback on its
appearance and ease of use.

a2 %

.= ili \ e : . - . I‘ E r‘-‘
9780170364744 A\ | 3 ! <1 M ' \C’lapter_é Programr’ng 261

PREPARING FOR

Design working modules
in response to solution
requirements, and use a
programming or scripting
language to develop the
modules

UNIT

STEPS TO FOLLOW

The Outcome will require approximately 10 classes to complete. For each programming
module, you will be given solution requirements (the analysis part of the PSM), and you will
select appropriate design tools to plan a solution, and then develop and test a working model
of the solution. Use pen and paper for the design to avoid prematurely beginning development.

Your teacher may choose to give you the tasks one at a time after periods of relevant
theory instruction, or as a group after all of the theory has been covered. To encourage serious
attention to design, your teacher may choose to enforce design-only periods of time where no
computers may be used.

Keep all of your designs, even failed attempts. A change of mind during design can actually
be a very desirable event!

DOCUMENTS REQUIRED FOR ASSESSMENT

Screen mock-up

Data dictionary

IPO chart

Internal documentation (must be used within the source code)

All solutions must show evidence of testing using appropriate test data.

ASSESSMENT

You will be assessed on the following « Functionality: Does the program do
measures. everything it is meant to do?
Whether your chosen design tools are - Appearance of both the interface and
appropriate and useful the output
Your choice of data types and storage - Easeofuse
structures « Internal documentation
Object and file naming « Thoroughness of testing

The accuracy of calculations
The appropriateness of software
functions you have used

,__
_—

-

o

: -

	UNIT
	CHAPTER
	Information systems in programming
	Hardware
	Processing hardware
	Storage hardware
	Communication hardware

	Software
	Types of software

	The OS (operating system)
	Programming and scripting languages
	Software development tools
	Storage structures
	Data types
	Resolution
	Compression

	Developing software
	PSM stage: Analysis
	PSM stage: Design

	Creating effective user interfaces
	Useability
	Affordance
	Accessibility
	Structure
	Visibility
	Legibility
	Tolerance
	Consistency

	Fundamental programming concepts
	Compiled and interpreted languages
	Modular programming
	Data validation
	Internal documentation
	Loops
	Logic
	Debugging
	Process testing
	Arrays
	Stacks
	Queues
	Files and records
	GUI controls and structures
	Searching

	Chapter summary
	Essential terms
	Important facts

	Test your knowledge
	Hardware
	Software
	The OS (operating system)
	Programming and scripting languages
	Software development tools
	Storage structures
	The software development process
	Creating effective user interfaces
	Fundamental programming concepts

	Apply your knowledge
	Guessing game

	Preparing for Unit Outcome
	Steps to follow
	Documents required for assessment
	Assessment

