NELSON QMATHS 12 GENERAL MATHEMATICS

WORKED SOLUTIONS

Chapter 1 Associations between variables

Exercise 1.01 Bivariate data

Question 1

а

	Surf	Swim	Lie on beach	
Staying locally	12	15	4	31
Visiting	6	7	6	19
	18	22	10	50

b There were 7 swimmers visiting Kirra beach.

Question 2

	Logg supp			
	Yes	Yes No		
NSW	20	56	76	
Victoria	18	63	81	
Queensland	25	43	68	
NT	8	23	31	
SA	12	48	60	
WA	24	39	63	
Tasmania	15	32	47	
ACT	2	25	27	
	124	329	453	

		Flat	Unit	House	
	1	40	35	40	115
tors	2	10	20	70	100
Refrigerators and freezers	3	5	5	30	40
Refri	4	0	0	20	20
H	>4	0	0	5	5
		55	60	165	280

Question 4

	Male	Female	
Book club member	20	32	52
Non-member	8	15	23
	28	47	75

a There are 23 non-members.

b There are 47 women.

Question 5

Question 6

Students are less than 20 years of age and teachers are more than 20 years of age.

		Age			
		≤ 20 (student)	>20 (teacher)	3	
	С	5	6	11	
Music type	J	5	7	12	
sic t	Е	9	5	14	
Mu	CW	5	6	11	
	R	12	8	20	
		36	32	68	

It looks like more students have a greater preference for easy-listening and rock than teachers.

			Years of education								
		11	12	13	14	15	16	17	18	19	
1	Blue	4	6	9	2	9	0	0	0	0	30
Worker	White	0	10	11	8	11	10	0	0	0	50
М	Management	0	0	0	2	3	1	6	4	4	20
	•	4	16	20	12	23	11	6	4	4	100

Question 8

Blue-collar workers have the lowest number of years of education, and management workers the highest.

Exercise 1.02 Percentage tables

Question 1

- **a** The percentage is the total of single parents.
- **b** The percentage is the total of men.
- **c** The percentage is the total of accidental injuries.
- **d** The percentage is the total of sports games.
- **e** The percentage is the total of low-income families.

Question 2

- **a** The total is the number of people interviewed.
- **b** The total is the number of women interviewed.
- **c** The total is the number of people in favour of daylight saving.
- **d** The total is the number of teenagers.
- **e** The total is the number of pet-owners.

Question	3
----------	---

	By men		By w	Total	
Location	On men	On women	On men	On women	
At home	258.9	44.5	34.7	119.0	457.1
At work	21.8	141.8	23.8	7.3	
At licensed premises	24.1	42.6	7.7	4.3	78.7
Outside	11.3	167.9	18.9	18.4	
Other	30.0	47.1	9.4	10.6	
Total	346.1	443.9	94.5	159.6	

a The percentage of assaults at home by women = $\frac{34.7 + 119}{457.1} \times 100 = 33.6\%$

b The percentage of assaults by women at home = $\frac{34.7 + 119}{94.5 + 159.6} \times 100 = 60.5\%$

c The percentage of assaults on men by women = $\frac{94.5}{346.1+94.5} \times 100 = 21.4\%$

d The percentage of assaults by women on men = $\frac{94.5}{94.5+159.6} \times 100 = 37.2\%$

• The percentage of assaults at licensed premises by men = $\frac{24.1+42.6}{78.7} \times 100 = 84.8\%$

f The percentage of assaults by men at work = $\frac{21.8 + 141.8}{346.1 + 443.9} \times 100 = 20.7\%$

g The percentage of assaults on men at work. =
$$\frac{21.8 + 23.8}{346.1 + 94.5} \times 100 = 10.3\%$$

	Lunch break						
	¹ /2 hour	³ ⁄4 hour	1 hour	Total			
Workshop	14	20	12	46			
On-site	20	14	6	40			
Office	6	8	13	27			
Total	40	42	31	113			

a The percentage of workshop workers who prefer 1 hour = $\frac{12}{46} \times 100 = 26.1\%$

b The percentage of office workers who prefer $\frac{1}{2}$ hour = $\frac{6}{27} \times 100 = 22.2\%$

c The percentage of those who prefer $\frac{1}{2}$ hour who are office workers

$$=\frac{6}{40}\times100=15.0\%$$

d The percentage of all workers who prefer $\frac{1}{2}$ hour and are office workers = $\frac{6}{112} \times 100 = 5.3\%$

e The percentage of on-site workers who prefer 1 hour. =
$$\frac{6}{40} \times 100 = 15\%$$

Question 5

	Quality control					
	Pass	Fail	Total			
Line A	35	6	41			
Line B	42	8	50			
Line C	59	8	67			
Total	136	22	158			

a The percentage of failures that are from line A = $\frac{6}{22} \times 100 = 27.3\%$

- **b** The percentage of Line A that fail quality control = $\frac{6}{41} \times 100 = 14.6\%$
- **c** The percentage of total production from line A = $\frac{41}{158} \times 100 = 25.9\%$

d The percentage of good production that is from line A = $\frac{35}{136} \times 100 = 25.7\%$

• The percentage of Line C that fail quality control = $\frac{8}{67} \times 100 = 11.9\%$

а

	Yes	Don't care	No	
Labor	28	4	17	49
Liberal/ National	25	3	27	55
Minor parties	8	7	6	21
	61	14	50	125

b Row percentages =
$$\frac{\text{cell value}}{\text{row total}} \times 100\%$$

Labor

Yes
$$\frac{28}{49} \times 100 = 57.1\%$$
 Don't care $\frac{4}{49} \times 100 = 8.2\%$

No
$$\frac{17}{49} \times 100 = 34.7\%$$

		Republic				
	Yes	Don't care	No			
Labor	57.1	8.2	34.7	100		
Liberal/ National	45.5	5.5	49.1	100		
Minor parties	38.1	33.3	28.6	100		
	48.8	11.2	40	100		

Labor voters favour a republic, but Liberal/National voters oppose it. Minor party voters are equivocal.

	Oil exj suj		
	Yes	No	Total
NSW	3	6	9
Vic	2	7	9
Qld	4	7	11
NT	3	4	7
SA	2	6	8
WA	4	5	9
Tas	1	4	5
ACT	1	4	5
Total	20	43	63

	Oil exp sup		
	Yes	No	Total
NSW	33.3%	66.7%	100%
Vic	22.2	77.8%	100%
Qld	36.4%	63.6%	100%
NT	42.9%	57.1%	100%
SA	25%	75%	100%
WA	44.4%	55.6%	100%
Tas	20%	80%	100%
ACT	20%	80%	100%
Total	31.7%	68.3%	100%
	31.7	68.3	100

Australians are generally opposed to oil exploration on the reef.

- 51, 26; 59, 48, 59,
 55, 39, 52, 17, 19, 21, 41, 43
 35, 58, 52, 23, 39, 65, 46, 25; 24, 59
 24, 32, 59, 22, 46, 56, 38, 46, 17
 24, 41, 26, 26, 26, 31
 32
- 5 52
- 7 17

	Age		
	40 or less	More than 40	
Less than 2	5	8	13
2	5	5	10
More than 2	12	5	17
	22	18	40

	Age		
	40 or less	More than 40	
Less than 2	38.5%	61.5%	100%
2	50%	50%	100%
More than 2	70.6%	29.4%	100%
	55%	45%	100%

People under 40 have more takeaways than people over 40.

Neither age groups nor number of siblings can be easily divided to make less than 5. The combinations shown are the best that can be achieved.

		Age group			
		25 or less	26 to 35	35+	
Siblings	2 or less	9	8	5	22
Sibilitgs	More than 2	4	4	3	11
	·	13	12	8	33

		Age group			
		25 or less	26 to 35	35+	
Siblings	2 or less	69%	67%	63%	67%
Sibilitgs	More than 2	31%	33%	38%	33%
		100%	100%	100%	100

There is a tendency for those who are older to have more siblings, but this is only slight and could be a random variation, as some of the group sizes are less than 5.

It could be that families were larger in the past.

Exercise 1.03 Interpreting associations

Question 1

а

	Heart attack		
	Yes	No	-
Obese	3020	2820	5840
Not obese	6380	41 780	48 160
	9400	44 600	54 000

b Row percentages

	Heart		
	Yes	No	
Obese	51.7%	48.3%	100%
Not obese	13.2%	86.8%	100%
	17.4%	82.6%	100%

51.7% of obese people die from heart attack.

13.2% of non-obese people die from heart attack.

Obese people are 4 times more likely to die of heart attack than non-obese people.

		Pregnant		
		Yes	No	
st	Positive	27%	7%	34%
Test	Negative	3%	63%	66%
		30%	70%	100%

Pregnant and positive = $30\% \times 90\% = 27\%$

Not pregnant and negative = $70\% \times 90\% = 63\%$

Recalculate as row percentages

		Pregnant		
		Yes	No	
st	Positive	79.4%	20.6%	100%
Test	Negative	4.5%	95.4%	100%
		30%	70%	100%

- **a** About 21% of women who are not pregnant have a false positive.
- **b** About 4.5% of pregnant women have a false negative.

4		
2		

	Full-time	Part-time	Not returning	
Professional	3%	6%	3%	12%
Administration	5%	7%	25 - 5 - 7 = 13%	25%
Clerical	17%	18%	28%	63%
	25%	100 - 69 = 31%	44%	100%

- **b** The probability that a woman is a professional planning to return to part-time work
 = 6% (from the table)
- **c** The probability that a professional woman plans to return to part-time work

$$=\frac{6}{12} \times 100 = 50\%$$

d The probability that a woman planning to return to part-time work is a professional $= \frac{6}{100} \times 100 - 10\%$

$$=\frac{0}{31}\times100=19\%$$

- The number of clerical workers planning to return to full-time work = $130 \times 17\% = 22$
- **f** The number of professionals not planning to return to work

 $= 90 \times 3\% = 2.3$. Less than 3.

The table below shows the percentages of people interviewed about TV-watching preferences, by age.

	Age				
	≤ 30	31–40	41–50	> 50	
Current affairs	12	10	11	14	47
Sport	10	7	8	6	31
Drama	1	3	5	13	22
	23	20	24	33	100

a The number of people from a similar group of 150 who would prefer to watch drama $=\frac{22}{100}\times150=33$

b The number of people from a similar group of 150 who would be over 50

$$=\frac{33}{100}\times150=50$$

c The number of people from a similar group of 150 who would be under 30 and prefer to watch drama = $\frac{1}{100} \times 150 = 1.5$, which represents 1 or 2 people.

- **d** The expected number who would prefer to watch sport from 50 people aged 41–50 = $\frac{8}{24} \times 50 \approx 17$
- The expected number from 90 current affairs enthusiasts who would be aged 31–40 = $\frac{10}{47} \times 90 \approx 19$

		Dise	ase	
		Yes	No	
st	Positive	24%	14%	38%
Test	Negative	6%	56%	62%
		30%	70%	100%

Disease and positive = $30\% \times 80\% = 24\%$

Not disease and negative = $70\% \times 80\% = 56\%$

Recalculate as row percentages

		Pregr	nant	
		Yes	No	
st	Positive	$\frac{24}{38} \times 100 = 63.2\%$	36.8%	100%
Test	Negative	9.7%	$\frac{56}{62} \times 100 = 90.3$	100%
		30%	70%	100%

About 63% of positive results are correct and about 37% are false. The ratio is 63: 37 = 1.7: 1

Which is about 12 : 7.

This table shows support for paid maternity leave. A student concluded that '30% of women would vote for paid maternity leave'. Explain why the conclusion is incorrect and find the correct result.

	Paid mat	ternity leave	
	Yes	No	-
Men	15%	35%	50%
Women	30%	20%	50%
	45%	55%	100%

Recalculate as row percentages.

	Paid maternity	y leave	
	Yes	No	
Men	$\frac{15}{50} \times 100 = 30\%$	70%	100%
Women	$\frac{30}{50} \times 100 = 60\%$	40%	100%
	45%	55%	100%

Recalculating by row shows that 60% of women would vote for paid maternity leave.

		Age		
	≤5	5 – 10	> 10	
Soft drinks	5	13	10	28
Milk drinks	14	16	4	34
Fruit juice	6	26	6	38
	25	55	20	100

Recalculate as row percentages.

		Age		
	≤5	5 – 10	> 10	
Soft drinks	17.9%	46.4%	35.7%	100%
Milk drinks	41.2%	47.1%	11.8%	100%
Fruit juice	15.8%	68.4%	15.8%	100%
	25%	55%	20%	100%

a The percentage of medium age children who preferred fruit juices = $\frac{26}{55} \times 100 = 47\%$ Incorrect.

b The percentage of older children who prefer soft drinks = $\frac{10}{20} \times 100 = 50\%$

The percentage of young children who prefer soft drinks = $\frac{5}{25} \times 100 = 20\%$

Older children are more than twice as likely to prefer soft drink compared with young children. Correct

c From the row percentages it can be seen that of the children who prefer milk 12% are older children. Incorrect

Exercise 1.04 Scatterplots

Question 1

b As the *X* values increase the *Y* values decrease, therefore *X* and *Y* have a negative association.

Question 2

Question 3

b As the P values increase the Q values also increase, therefore P and Q have a positive association.

b

а

As the V values increase the W values also increase, therefore V and W have a positive association.

Question 5

b As the *X* values increase the *Y* values decrease, therefore *X* and *Y* have a negative association.

Question 6

The values go downward from left to right, so there is a negative association between age and the number of takeaways.

- **a** The points are sloping down from left to right and almost all the points are close to the line of best fit, therefore there is a moderate negative linear association.
- **b** There is no linear association.
- **c** The points are sloping upward from left to right and all the points are close to the line of best fit, therefore there is a strong positive linear association.
- **d** The points are sloping down from left to right and the points are not all close to the line of best fit, therefore there is a weak negative linear association.
- e No apparent association
- f Weak positive linear association
- **g** Moderate positive linear association

Question 2

As the m values increase, the T values decrease and almost all the points are close to the line of best fit. Therefore, there is a moderate negative linear association between m and T.

Question 3

As the p values increase, the q values also increase and all the points are close to the line of best fit. Therefore, there is a strong positive linear association between p and q.

There is a weak positive linear association between *x* and *y*.

Question 5

As the P values increase, the V values decrease and all the points are close to the line of best fit. Therefore, there is a strong negative linear association between P and V.

Question 6

Parents' ages have a moderate positive linear association. They have similar ages.

There is a moderate negative linear association between age and the highest frequency heard. People lose hearing as they

get older.

Question 7

Question 8

There is a moderate positive linear association of their quotes.

Although their quotes follow the same trend, either could be the cheaper for particular jobs.

The covariance of a and b is 6.6 and their standard deviations are 2.1 and 3.4.

a
$$r = \frac{COV(x, y)}{SD(x) \times SD(y)} = \frac{6.6}{2.1 \times 3.4} = 0.92$$

b There is a strong positive association.

Question 2

The covariance of m and p is -8.9 and their standard deviations are 5.1 and 6.3.

a
$$r = \frac{COV(x, y)}{SD(x) \times SD(y)} = \frac{-8.9}{5.1 \times 6.3} = -0.28$$

b There is a weak negative association.

Question 3

The covariance of *a* and *b* is 28.6 and their standard deviations are 7.9 and 5.9.

a $r = \frac{COV(x, y)}{SD(x) \times SD(y)} = \frac{28.6}{7.9 \times 5.9} = 0.61$

b There is a moderate positive association.

Question 4

The covariance of y and z is -12.5 and their standard deviations are 2.4 and 6.1.

a
$$r = \frac{COV(x, y)}{SD(x) \times SD(y)} = \frac{-12.5}{2.4 \times 6.1} = -0.85$$

b There is a strong negative association.

Question 5

The covariance of p and q is 15.2 and their standard deviations are 9.7 and 10.2.

a
$$r = \frac{COV(x, y)}{SD(x) \times SD(y)} = \frac{15.2}{9.7 \times 10.2} = 0.15$$

b There is a little or no association.

g	f	Covariance	SD(g)	SD(f)	r
8	55	38.1818182	6.32456	9.16567	0.6588
10	67.1				
12	64				
14	77				
16	64.6				
18	57.2				
20	83.7				
22	77.6				
24	70.6				
26	78.2				
28	80.1				

A moderate positive association.

Question 7

t	v	Covariance	SD(t)	SD(v)	r
8.4	102	-96.357	11.6768	19.7627	-0.4176
6.6	59.4				
9.3	57.1				
14.4	86.5				
19.2	67.1				
24.3	72.1				
26.6	31.7				
32.3	37.3				
34.4	57.2				
42.7	67.1				

A moderate negative association.

Question 8

r = -0.88, a strong negative association

Question 9

r = 0.33, a weak positive association

r = -0.32, a weak negative association

Question 11

r = 0.82, a strong positive association

Question 12

r = 0.62, a moderate positive association

Question 13

r = 0.98, a very strong association

Question 14

Using 1 = E-, up to 15 = A+, r = 0.68, a moderate association

Maths	1	4	4	5	5	6	7	7	7	9	10	11	12	12	15
English	6	4	5	6	7	11	2	5	10	9	15	8	8	15	15

Chapter review

Question 1

а

	Southside	Northside	Total
Female	320	320	640
Male	210	330	540
Total	530	650	1180

b There are 330 males were on the Northside.

c There are 530 students were living on the Southside.

Question 2

	Е	G	М	Total
Apprenticeship	2	2	1	5
TAFE	3	3	2	8
Work	3	3	2	8
Uni	1	5	6	12
Total	9	13	11	33

b

а

There are 13 students, including apprentices, who intend to get a job next year.

Question 3

Е

	Biology	Ancient History	Geography	Total
Male	4	2	4	10
Female	3	3	6	12
Total	7	5	10	22

There are 6 female students who study Geography.

Question 4

A

As the total number of students in the Year 12 General Maths class is 24, there must be 2 students who study another subject.

	Caffeine	Sugar	Total
None	3	0	3
Low	4	4	8
Medium	1	1	2
High	2	4	6
Total	10	9	19

Question 6

- **a** The percentage of the crowd at a Sydney FC–Brisbane Roar game who are Brisbane fans is a percentage of the number of people at the game
- **b** The probability that a randomly chosen teenager from Kalkadoon SHS has a pet dog is a proportion of the number of students at Kalkadoon SHS.
- **c** The probability that a Brisbane supporter on a train is female is a proportion of the number of Brisbane supporters on the train.

Quest	lon	1

		Black	Brown	Fair	Red	Total
	Brown	3	13	4	1	21
	Hazel	2	9	3	1	15
ur	Green	1	2	1	0	4
Eye colour	Blue	4	16	5	1	26
Eye	Grey	1	2	1	0	4
	Total	11	42	14	3	70

a The percentage of brown-haired people with blue eyes

$$=\frac{16}{42}\times100=38.1\%$$

b

$$=\frac{1}{70}\times100=0.014$$

Time	Morning shower	Night shower	Total
Before 5:45	2	0	2
Before 6:00	3	0	3
Before 6:15	4	2	6
Before 6:30	3	4	7
Before 6:45	5	2	7
Before 7:00	4	3	7
Before 7:15	4	4	8
Before 7:30	3	3	6
Before 7:45	3	4	7
Before 8:00	2	5	7
Before 8:15	0	6	6
Before 8:30	0	3	3
Total	33	36	69

Calculate cell percentages:

 $\frac{\text{cell value}}{\text{total}} \times 100$

Time	Morning shower	Night shower	Total
Before 5:45	2.9%	0%	2.9%
Before 6:00	4.3%	0%	4.3%
Before 6:15	5.8%	2.9%	8.7%
Before 6:30	4.3%%	5.8%	7
Before 6:45	7.2%	2.9%	7
Before 7:00	5.8%	4.3%	7
Before 7:15	5.8%	5.8%	8
Before 7:30	4.3%	4.3%	8.6%
Before 7:45	4.3%	5.8%	10.1%
Before 8:00	2.9%	7.2%	10.1%
Before 8:15	0%	8.7%	8.7&
Before 8:30	0%	4.3%	4.3%
Total	47.8%	52.2%	100%

Students who prefer a night shower tend to get up later than those preferring a morning shower. Slightly over half prefer a night shower.

а

	Oste (age				
	Yes	Yes No			
Very active (age 20 – 60)	10	50	60		
Sedentary (age 20 – 60)	60	120	180		
L	70	170	240		

b 60 women with sedentary lifestyles developed osteoporosis when aged over 65.

c The probability of developing osteoporosis for those with very active lifestyles

$$=\frac{10}{60}=\frac{1}{6}$$

The probability of developing osteoporosis for those with sedentary lifestyles

 $=\frac{60}{180}=\frac{1}{3}$

d Those with sedentary lifestyles were twice as likely to develop osteoporosis as those with very active lifestyles.

	Blood d		
	Yes	No	
Positive	0.392%	1.992%	2.384%
Negative	0.008%	97.608%	97.616%
	0.400%	99.600%	100.000%

False positive

Patient does not have the disease and tests positive = $99.6 \times 2\% = 1.992\%$

False negative

Patient does have the disease and tests negative = $0.4 \times 2\% = 0.008\%$

True positive

Patient does have the disease and tests positive = $0.4 \times 98\% = 0.392\%$

True negative

Patient does not have the disease and tests negative = $99.6 \times 98\% = 97.608\%$

	Blood d		
	Yes	No	
Positive	0.392%	1.992%	2.384%
Negative	0.008%	97.608%	97.616%
L	0.400%	99.600%	100.000%

a A positive result is false =
$$\frac{1.992}{2.384} \times 100 = 83.6\%$$

b A negative result is false = $\frac{0.008}{97.616} \times 100 = 0.0082\%$

а

b There is a moderate positive linear association.

Question 12

As the X values increase, the Y values decrease and all the points are close to the а line of best fit. Therefore there is a strong negative linear association between X and Y.

A strong negative linear association.

- b A non-linear association.
- As the X values increase, the Y values increase and the points are not all close to С the line of best fit. Therefore, there is a weak positive linear association.
- d A moderate negative linear association.

Question 13

D

$$r = \frac{COV(x, y)}{SD(x) \times SD(y)} = \frac{27.8}{6.3 \times 7.1} = 0.62$$

Question 14

$$r = \frac{COV(x, y)}{SD(x) \times SD(y)} = \frac{25.8}{5.7 \times 9.3} = 0.49$$

A moderate positive linear association.

. . .

17 (

а

$$r = \frac{COV(x, y)}{SD(x) \times SD(y)} = \frac{-16.2}{4.7 \times 11.5} = -0.30$$

A weak negative linear association.

$$r = \frac{COV(x, y)}{SD(x) \times SD(y)} = \frac{17.6}{3.5 \times 5.8} = 0.87$$

A strong positive linear association.

Qu	esti	on ′	15																	
а	i	r = -	-0.8	89	S	trong	nega	ative	linea	ar as	socia	ation	l							
b	1	r = 0).1()	li	ittle c	or no	asso	ciatic	on										
Ye	esti ar 7																			
30	15	15	20	0 1	5 10	0 10	10	10	10	15	10	15	10	10	15	20				
	ar 8 10	30	50	0 2	0 50) 40	30	10	10	50	30	10	20	50	20					
Yea	ar 9																			
90	70	70	30	0 7	0 8) 80	20	30	90	20	60	80	30	80	40	70				
Ye	ar 1()																		
90	90	80	7(0 3	0 3	0 20	30	60	40	30	10									
	ar 11) ⊿	40	40	140	40	120	140	15	0 1	10	110	12() 7(0 50	15()		
			•	10	10	110	10	120	110	10	0 1	10	110	120	, ,	0 20	100	,		
	ar 12																			
80	60	180) 2	20	90 4	40 6	0 1.	30 7	0 1	00	120	12	0 1	80	70	110	140	160	150	3
				7	8	9	10	11	12	To	tal									
10)_30	m		17	11	5	6	1	2	4	2									

	7	8	9	10	11	12	Total
10–30 m	17	11	5	6	1	2	42
40–60 m	0	5	2	2	4	3	16
70–90 m	0	0	10	4	2	4	20
100–120 m	0	0	0	0	4	4	8
Over 120 m	0	0	0	0	5	6	11
Total	17	16	17	12	16	19	97

Students in later years say they spend more time than younger students.

	Short	Average		
Male	23	65	42	130
Female	46	73	26	145
	49	138	68	275

The probability that a female student is $tall = \frac{26}{145} = 0.18$

The probability that a tall student is female $=\frac{26}{68}=0.38$

Question 18

A true positive is when a patient has the disease and the test is accurate.

The probability of a true positive = $0.5 \times 87\% = 0.435\%$

A false positive is when a patient does not have the disease but the test is inaccurate.

The probability of a false positive = $99.5 \times 13\% = 12.935\%$

Question 19

r = 0.95, strong positive association. Higher loss is associated with a higher mouse population.

3	6
29	4
34	18
52	28
78	14
114	42
112	36
134	55
162	67
168	73

0.947158