

Rule

A finite arithmetic progression is called an **arithmetic series**. The sum of the first *n* terms in an arithmetic progression can be calculated in two ways:

$$S_n = \frac{n}{2}[2a + (n-1)d] \text{ or } S_n = \frac{n}{2}[a+l]$$

where *a* is the first term *l* is the last term

d is the common difference between terms.

1 of 2

Questions

QUESTIONS	0010110115
Find the sum of each of the following arithmetic series.	A 945
1 The first 5 terms of 6, 10, 14,	C 18 E 11 or 30
2 The first 30 terms of 17, 18, 19,	F -594
3 The first 24 terms of 100, 95, 90,	G 1326
4 The first 51 terms of $\frac{1}{2}$, 1, $1\frac{1}{2}$,	H 6975
5 The first 27 terms of 43, 38, 33,	I 25 284
6 $14 + 11 + 8 + \dots - 1 - 6$	L 663
7 $34 + 45 + 56 + \dots + 276$	M −22 041
8 $85 + 78 + 71 + \dots - 559$	N $27n^2 - 42n + 16$
9 $-5 + -2\frac{1}{3} + \frac{1}{3} + \dots + 83$	O 2600
10 All positive even numbers less than 200	P −90
11 All numbers between 148 and 302 that are divisible by 5	R 3565
12 The first $3n - 2$ terms of 1, 7, 13,	S $-6n^2 + 53n - 95$ T 9900
13 The first $n + 1$ terms of 3, 5, 7,	U $n^2 + 4n + 3$
14 The first $2n - 5$ terms of 10, 7, 4,	V 70
15 How many terms of the series $5 + 8 + 11 +$ need to be added together to equal 549?	W 1020
16 How many terms of the series $120 + 114 + 108 + \dots$ need to be added together to equal 990?	Y -11
17 If the 1st term of an arithmetic sequence is 43	

and the 12th term is -12, find the sum of the first 20 terms.

- **18** If the 3rd term of an arithmetic sequence is 1941 and the 22nd term is 1371, find the sum of the first 14 terms.
- **19** If the 7th term of an arithmetic sequence is 15 and the 11th term is 23, find the sum of the first 50 terms.

Solutions

- 6
- 5