

TOPIC TEST

Logarithmic functions

- Time allowed: 45 minutes
- Part A: 10 multiple-choice questions (10 marks)
- Part B: 9 free-response questions (40 marks)
- Total: 50 marks

Part A

Name:

10 multiple-choice questions 1 mark each: 10 marks Circle the correct answer.

1	$\log_2\left(\frac{1}{8}\right) =$ A -3 C $\frac{1}{3}$	B 3D 2		Simplify $\log_4 (x) - \log_4 (x+4)$ A $\log_4 \left(\frac{x+4}{x}\right)$ C $\log_4 \left(\frac{x}{x+4}\right)$	В	$\log_4\left(\frac{x}{x-4}\right)$ -1
2	$\log_{10}(1) =$ A 0 C 2	B 1D 10	5	If $\log_{m} (12) + \log_{m} (x) = 0$, the A -12 C $\frac{1}{12}$	n x B D	0
3	$\log_{a}(\sqrt{a}) =$ A a C 1	B $\frac{1}{2}$ D 2	6	Solve $\log_4 (4x) = 3$. A $x = 64$ C $x = 12$		x = 16 $x = 3$

7 Solve $3 \log_2 (2x - 1) = -9$.

A
$$x = \frac{9}{16}$$

B $x = \frac{7}{16}$
C $x = -\frac{5}{2}$
D $x = \frac{9}{2}$

10 The formula for pH is pH = -log[H⁺], where [H⁺] is the concentration of hydrogen ions, given in mole/litre. If an orange juice has a pH of 3.6, what is the concentration of hydrogen ions?

Α	-0.5562	В	1.7976

C 0.5563 **D** 0.0003

8 Which function's graph is the graph of $y = \log_a(x)$ translated 3 units upwards?

$A y = \log_a \left(x + 3 \right)$	$\mathbf{B} y = \log_a \left(x - 3 \right)$
C $y = \log_a (x) - 3$	$D y = \log_a (x) + 3$

9 What is the equation of this logarithmic graph?

Part B

9 free-response questions 40 marks Show your working where appropriate.

11 Write $3^4 = 81$ as a logarithmic statement.

12 Evaluate \log_7 (35) correct to 4 decimal places.

[2 marks]

13 Expand $\log_a (xy^2)$ in terms of $\log_a (x)$ and $\log_a (y)$.

[2 marks]

14 Given that $\log_m (2) = 0.73$, $\log_m (3) = 1.15$ and $\log_m (5) = 1.68$, use the properties of logarithms to evaluate

 $\log_m\left(\sqrt{\frac{2}{15}}\right)$ correct to 2 decimal places.

[4 marks]

15 Solve each equation.

a $\log_2(x) = -5$

b $2 \log_3 (3x-2) = 4$

[1 mark]

c $\log(x) + \log(x+3) = \log(5x+8)$

d $81^{2x-1} = 27$

e $5^{3x-4} = 21$, correct to 3 decimal places.

[12 marks]

16 On the same number plane below, sketch the graphs of $y = \log_4 (x)$, $y = \log_4 (x) + 2$ and $y = \log_4 (x + 2)$, labelling important features.

[6 marks]

- **17** The population of a city can be modelled using the formula $P = 4.6(1.08)^t$, where *t* is the number of years after 2017 and *P* is the population in millions.
 - **a** Use the formula to calculate the city's population in the year 2037, to the nearest 100 million.
 - **b** In what year will the population be 10 times what it was in 2017?

18 a If you deposit \$6000 into an account paying 4% annual interest compounded monthly, how long will it be until there is \$9000 in the account?

b At 3.2% annual interest compounded quarterly, how long will it take to double your money?

[5 marks]

[4 marks]

wave.

nelsonnet

 $M(x) = \log\left(\frac{x}{x_0}\right)$ where x is the measure of the amplitude of the earthquake wave and x_0 is the amplitude of the standard

a Find the magnitude of an earthquake correct to 2 decimal places if $x = 50\ 000\ x_0$.

19 One of the Richter formulas used to measure the magnitude, *M*, of an earthquake is:

b How many times more intense than the reference intensity, x_0 , is an earthquake with a magnitude of 5.2?

[4 marks]

This is the end of the test. Use the rest of this page for extra working space.

Answers

Part A				
1 A	2 A	3 B	4 C	5 C
6 B	7 A	8 D	9 B	10 D

Part B

- **11** $\log_3 81 = 4$ **12** 1.8271 **13** $\log_a x + 2 \log_a y$
- **14** -1.05
- **15 a** $x = \frac{1}{32}$ **b** $x = \frac{11}{3}$

- **c** x = -2, 4
- **d** $x = \frac{7}{8}$
- **e** *x* = 1.964

- **17 a** 21.4 million
- **18 a** 121.8 months (just after 10 years)
- **19 a** approx. 4.7

- b year 2047b 87 quarters (21.75 years)
- **b** approx. 3 times more: $158490 x_0$