

Name:_____

TOPIC TEST Vectors

- Time allowed: 45 minutes
- Part A: 10 multiple-choice questions (10 marks)
- Part B: 7 free-response questions (40 marks)
- Total: 50 marks

Part A

10 multiple-choice questions 1 mark each: 10 marks Circle the correct answer.

1 Given the points A and B shown, then AB =

$$A \begin{bmatrix}
-3 \\
4
\end{bmatrix}$$

$$B \begin{bmatrix}
4 \\
-3
\end{bmatrix}$$

$$C \begin{bmatrix}
3 \\
-4
\end{bmatrix}$$

$$D \begin{bmatrix}
-4 \\
3
\end{bmatrix}$$

2 Given the three vectors \mathbf{a} , \mathbf{b} and \mathbf{c} shown, $\mathbf{c} =$

$$\mathbf{A} \mathbf{a} + \mathbf{b}$$

$$Ba-b$$

$$Cb-a$$

$$D b+a$$

3 Given $\mathbf{p} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, what is the opposite of \mathbf{p} ?

$$\mathbf{A} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$\mathbf{B} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

$$\mathbf{D} \left[\begin{array}{c} 1 \\ 2 \end{array} \right]$$

4 Given the point *P* and the origin *O* shown, then **OP** in polar form is

$$\mathbf{A} \begin{bmatrix} 2\sqrt{2} \\ \frac{3\pi}{4} \end{bmatrix}$$

$$\mathbf{B} \begin{bmatrix} 2\sqrt{2} \\ \frac{7\pi}{4} \end{bmatrix}$$

$$\mathbf{C} \begin{bmatrix} 2\sqrt{2} \\ -\frac{\pi}{4} \end{bmatrix}$$

$$\mathbf{D} \left[\begin{array}{c} 2\sqrt{2} \\ \frac{\pi}{4} \end{array} \right]$$

is equivalent to the vector

$$\mathbf{A} \left[\begin{array}{c} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{array} \right]$$

$$\mathbf{B} \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix}$$

$$\mathbf{c} \begin{bmatrix} \frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{bmatrix}$$

$$\mathbf{D} \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{bmatrix}$$

6 The unit vector $\hat{\mathbf{a}}$ when $\mathbf{a} = \begin{bmatrix} -8 \\ -6 \end{bmatrix}$ is $\mathbf{A} \begin{bmatrix} 0.8 \\ -0.6 \end{bmatrix}$

$$\mathbf{A} \left[\begin{array}{c} 0.8 \\ -0.6 \end{array} \right]$$

$$\begin{bmatrix} -0.8 \\ -0.6 \end{bmatrix}$$

$$\mathbf{c} \left[\begin{array}{c} 0.6 \\ -0.8 \end{array} \right]$$

D
$$\begin{bmatrix} -0.6 \\ -0.8 \end{bmatrix}$$

$$7 \left[\begin{array}{c} 10 \\ \frac{\pi}{3} \end{array} \right] + \left[\begin{array}{c} 10 \\ -\frac{\pi}{3} \end{array} \right] =$$

$$\mathbf{A} \left[\begin{array}{c} 0 \\ 0 \end{array} \right]$$

$$\mathbf{B} \left[\begin{array}{c} 10 \\ \sqrt{3} \end{array} \right]$$

$$\mathbf{c} \begin{bmatrix} 10 \\ 0 \end{bmatrix}$$

$$\mathbf{D} \left[\begin{array}{c} 20 \\ 0 \end{array} \right]$$

- 8 Express the answer to $\begin{bmatrix} 8 \\ 270^{\circ} \end{bmatrix} + \begin{bmatrix} 4 \\ 180^{\circ} \end{bmatrix}$ in
 - **A** -4i 8j
 - **B** 8i + 4j
 - **C** 8i 4j
 - **D** -4i + 8j
- **9** Express $\mathbf{a} + \mathbf{b}$ in $\mathbf{i} \mathbf{j}$ form given the vectors below.

- A 3i + j
- B 3i j
- C -3i + j
- D -3i j

10 The sketch of a force equal to 2 N acting in a north-easterly direction is

Part B

7 free-response questions
40 marks
Show your working where appropriate.

11 Given
$$\mathbf{a} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\mathbf{c} = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$, then simplify each expression.

a
$$3a - 2b + c$$

b
$$10a - 5c$$

[4 marks]

12 Given
$$\mathbf{a} = \begin{bmatrix} 5 \\ -12 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} -12 \\ 5 \end{bmatrix}$, find:

$$\textbf{b} \quad \hat{a} + \hat{b}$$

c
$$r$$
 and θ if $\begin{bmatrix} 5 \\ -12 \end{bmatrix} = \begin{bmatrix} r \\ \theta \end{bmatrix}$.

[6 marks]

a Determine the displacement vector.

b Hence determine the distance from the starting point.

[5 marks]

14 a Express the vectors
$$\mathbf{p} = \begin{bmatrix} 8 \\ \frac{\pi}{6} \end{bmatrix}$$
 and $\mathbf{q} = \begin{bmatrix} 8 \\ \frac{2\pi}{3} \end{bmatrix}$ in component form and hence find $\mathbf{p} + \mathbf{q}$.

b	Hence	determine	p+q	١.
			r · 1	ľ

[6 marks]

15 Consider the vectors $\mathbf{a} = \begin{bmatrix} -6 \\ -3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

a Sketch $-\frac{\mathbf{a}}{2}$ and 3**b** on the set of axes below.

b Show that | a | = 3 | b |.

С	Convert $-2\mathbf{a} + 3\mathbf{b}$ to polar form.

16 Given this cube with FE = a, FB = b and FB = c, express AG in terms of a, b and c.

[3 marks]

In wl	nat direction should the plane head to fly to <i>B</i> , which is due east of <i>A</i> ?
How	long will the airplane take to travel to <i>B</i> if <i>B</i> is 350 km from <i>A</i> ?

[6 marks]

This is the end of the test.
Use the rest of this page for extra working space.

Answers

11 a
$$3\mathbf{a} - 2\mathbf{b} + \mathbf{c} = 3\begin{bmatrix} 1 \\ -3 \end{bmatrix} - 2\begin{bmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 5 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ -9 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \begin{bmatrix} 5 \\ -2 \end{bmatrix} = \begin{bmatrix} 4 \\ -17 \end{bmatrix}$$

b
$$10\mathbf{a} - 5\mathbf{c} = 10 \begin{bmatrix} 1 \\ -3 \end{bmatrix} - 5 \begin{bmatrix} 5 \\ -2 \end{bmatrix}$$

$$= \begin{bmatrix} 10 \\ -30 \end{bmatrix} - \begin{bmatrix} 25 \\ -10 \end{bmatrix}$$
$$= \begin{bmatrix} -15 \\ -20 \end{bmatrix}$$

12 a
$$|\mathbf{a}| = \begin{bmatrix} 5 \\ -12 \end{bmatrix} = \sqrt{25 + 144} = \sqrt{169} = 13$$

b
$$\hat{\mathbf{a}} + \hat{\mathbf{b}} = \frac{1}{13} (5\mathbf{i} - 12\mathbf{j}) + \frac{1}{13} (-12\mathbf{i} + 5\mathbf{j})$$

$$=\frac{1}{13}(-7i-7j)$$

$$\hat{\mathbf{a}} + \hat{\mathbf{b}} = -\frac{7}{13} (\mathbf{i} + \mathbf{j})$$

$$\begin{array}{c|c} \mathbf{c} & 5 \\ -12 \end{array} = 13 :: r = 13$$

$$\tan(\theta) = -\frac{12}{5}$$

$$\theta = -1.176$$

$$\therefore \mathbf{p} + \mathbf{q} = \begin{bmatrix} 13 \\ -1.176 \end{bmatrix}$$

13 a
$$\begin{bmatrix} 0 \\ 3 \end{bmatrix} + \begin{bmatrix} 5\cos(-45^{\circ}) \\ 5\sin(-45^{\circ}) \end{bmatrix} + \begin{bmatrix} -4 \\ 0 \end{bmatrix} = \begin{bmatrix} -0.464 \\ -0.536 \end{bmatrix}$$

b
$$\begin{bmatrix} -0.464 \\ -0.536 \end{bmatrix} = 0.709$$

14 a
$$\mathbf{p} = \begin{bmatrix} 8 \\ \frac{\pi}{6} \end{bmatrix} = \begin{bmatrix} 8\cos(\frac{\pi}{6}) \\ 8\sin(\frac{\pi}{6}) \end{bmatrix} = \begin{bmatrix} 4\sqrt{3} \\ 4 \end{bmatrix}$$

$$\mathbf{q} = \begin{bmatrix} 8 \\ \frac{2\pi}{3} \end{bmatrix} = \begin{bmatrix} 8\cos\left(\frac{2\pi}{3}\right) \\ 8\sin\left(\frac{2\pi}{3}\right) \end{bmatrix} = \begin{bmatrix} -4 \\ 4\sqrt{3} \end{bmatrix}$$

$$\mathbf{p} + \mathbf{q} = \begin{bmatrix} 4\sqrt{3} \\ 4 \end{bmatrix} + \begin{bmatrix} -4 \\ 4\sqrt{3} \end{bmatrix} = \begin{bmatrix} 4(\sqrt{3} - 1) \\ 4(1 + \sqrt{3}) \end{bmatrix}$$

b
$$|\mathbf{p} + \mathbf{q}| = 11.314$$

15 a
$$-\frac{\mathbf{a}}{2} = -\frac{1}{2} \begin{bmatrix} -6 \\ -3 \end{bmatrix} = \begin{bmatrix} 3 \\ 1.5 \end{bmatrix}$$
 and $3\mathbf{b} = 3 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$

b Show that $|\mathbf{a}| = 3|\mathbf{b}|$.

$$|\mathbf{a}| = \sqrt{36 + 9} = \sqrt{45}$$

$$3|\mathbf{b}| = 3\sqrt{1+4} = \sqrt{9}\sqrt{5} = \sqrt{45}$$

$$|\mathbf{a}| = 3|\mathbf{b}|$$

$$\mathbf{c} \quad -2\mathbf{a} + 3\mathbf{b} = -2 \begin{bmatrix} -6 \\ -3 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$= \begin{bmatrix} 12 \\ 6 \end{bmatrix} + \begin{bmatrix} 3 \\ 6 \end{bmatrix} = \begin{bmatrix} 15 \\ 12 \end{bmatrix}$$

$$r = \begin{bmatrix} 15 \\ 12 \end{bmatrix} = \sqrt{369} = 19.209$$

$$\theta = \tan^{-1} \left(\frac{12}{15}\right) = 0.675$$

$$\therefore -2\mathbf{a} + 3\mathbf{b} \equiv \begin{bmatrix} \sqrt{369} \\ 0.675 \end{bmatrix}$$

16
$$AG = AF + FG$$

 $AG = AE + EF + FG$
 $AG = -c - a + b$

17 a N
Wind 30 km/h $A = \frac{\theta}{45^{\circ}}$ Airspeed 230 km/h
Ground speed

$$\frac{\sin(\theta)}{30} = \frac{\sin(45^\circ)}{230}$$
$$\sin(\theta) = 0.092\ 231\ 392\ 9$$

$$\theta$$
= 5.29°
Direction the plane must go is 90°

Direction the plane must go is $90^{\circ} + 5.29^{\circ} = 95.29^{\circ} = 095^{\circ}$.

b Let *d* be the ground speed.

$$\frac{d}{\sin(45^\circ + 90^\circ - 5.29^\circ)} = \frac{230}{\sin(45^\circ)}$$
$$d = 250.233$$

Time =
$$\frac{350}{250.233}$$
 = 1.399 hours

The plane will take 1 hour 24 minutes.