

1 of 2

CALCULATOR INSTRUCTIONS

Chapter 1

Example 5

TI-Nspire CX

Make sure that your calculator is set to degrees.

Open a Calculator page and press end and ([[]]). Enter the difference in the *x*-coordinates and the difference in *y*-coordinates separated by a comma (,). The square brackets denotes that this is a vector.

Place the cursor to the right of the square brackets and press menu. Select 7: Matrix & Vector, C: Vector and 4: Convert to Polar and press enter. The polar form of **d** is then displayed.

(1.1)▶	*Doc 🗢	DEG 🚺 🎽
[4 3]▶Polar	[5	∠36.86989765]
I		

Example 6

TI-Nspire CX

Open a Calculator page and press [t] and [[[]]. Enter the norm of the vector and the angle that **d** makes with the *x*-axis separated by a comma. To enter the angle, press [t] and select the angle symbol. There is no need for the degree symbol.

Place the cursor to the right of the square brackets and press menu. Select 7: Matrix & Vector, C: Vector and 5: Convert to Rectangular and press enter. The Cartesian form of **d** is then displayed.

Example 8

TI-Nspire CX

Enter vector **f** as previously explained.

Calculate $3 \times f$ in the usual way.

Enter vector **m** as previously explained for vectors in polar form. Calculate $-5 \times \mathbf{m}$ and convert the result to polar form as shown.

1.1 ▶	*Doc⊽	DEG 🚺 🗙
f.=[-6 3]		[-6 3]
3. <i>f</i>		[-18 9]
<i>m</i> :=[5 ∠251]	$\left[-5 \cdot \sin(19)\right]$	-5 · cos(19)]
(-5·m)▶Polar		[25 ∠71]

2 of 2

Example 14

TI-Nspire CX

For a vector in component form, e.g., (3, -4), press menu, and select 7: Matrix & Vector, C: Vector and 1: Unit Vector. Enter the vector as described in Example 8. Press enter to display the unit vector.

₹ 1.1 ►	*Doc マ	DEG 🚺 🗙
unitV([3 -4])		$\begin{bmatrix} \frac{3}{5} & \frac{-4}{5} \end{bmatrix}$
<u> </u>		

Example 15

TI-Nspire CX

For a vector in polar form, e.g., (5, 300°), enter as *Doc ▽ DEG 🚺 ◀ 1.1 ▶ previously described in Example 8 then press menu, unitV([3 -4]) 3 5 -4 and select 7: Matrix & Vector, C: Vector and 5: 5 Convert to rectangular. Press enter to display the ([5 ∠300])▶Rect 5 -5∙√3 vector in component (rectangular) form. I

Example 17

TI-Nspire CX

You first need to define the vectors.	∢ 1.1 ▶ *D	0C 🗢 🛛 DEG 🚺 🗙
To define p , press P and then press etr etr and enter the vector as previously explained. Press enter	p:=[-4 7] q:=[3 -5]	[-4 7] [3 -5]
to display the vector. Define \mathbf{q} in the same way.	<i>q</i> - <i>p</i>	[7 -12]
To find $\mathbf{q} - \mathbf{p}$, press Q $-$ P and press enter to display the result.	3· <i>p</i> -5· <i>q</i> I	[-27 4 6]
To find $3\mathbf{p} - 5\mathbf{q}$, press $3 \times \mathbf{P} - 5 \times \mathbf{Q}$ and press enter to display the result.		